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ABSTRACT
Building correct implementations of distributed systems continues
to elude us. Solutions consist of abstract modeling languages such
as TLA+, PLusCal, which specify models of systems and tools like
Coq, and SPIN which verify correctness of models but require
considerable amount of effort, or transparent model checkers like
MODIST, CMC and CHESS which suffer from state space explosion,
rendering them impractical to use as they are too slow.

We propose Dara, a novel hybrid technique that combines the
speed of abstract model checkers with the correctness and ease-of-
use of transparent model checkers. Dara utilizes tests as well as a
transparent model checker to generate logs from real executions of
the system. The generated logs are analyzed to infer a model of the
system which is model-checked by SPIN to verify user-provided
invariants. Invariant violations are reported as likely bug traces.
These traces are then passed to a replay engine which tries to replay
the traces as real executions of the system to remove false positives.
We are currently evaluating Dara’s efficiency and usability.
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1 BACKGROUND & MOTIVATION
Distributed systems are difficult to debug and understand. Despite
the difficulty, developers of distributed systems strive for correct-
ness as these systems have become a key part of modern data center
environments. Additionally, failures caused by bugs in distributed
systems can be costly [2, 22].

Modeling languages like TLA+, PlusCal, are used to model pro-
tocols and system behavior, which are used by tools like Coq, SPIN
to verify safety and liveness properties. [20]. A limitation of these
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tools is that they are applied on a model of the system and not the
actual system. There is still a gap between the specification and
implementation of systems leaving the system prone to bugs.

Verdi is a framework for implementing and formally verifying
fault tolerant distributed systems in Coq [23]. It requires serious
developer effort as Verdi requires developers to provide a speci-
fication of the system in OCaml and write proofs of correctness.
Similarly, IronFleet is a methodology for automated verification of
distributed systems [12]. It also requires significant developer effort
as the developers must write a formal specification, a distributed
protocol layer, and proof annotations.

Transparent model checking and model-based testing have been
widely used in the past to find bugsin actual implementations of
distributed systems [1, 6, 10, 11, 14, 16, 17, 19, 24, 25]. As these
model checkers focus on testing, unmodified, distributed and con-
current systems, they are easy to use as developers need to provide
minimal input. However, this approach leads to massive state space
explosion. DEMETER [11], built on top of MODIST [25], reduces
the state space explosion by separating out the system’s global
state from the local states of the system’s components during explo-
ration. SAMC [17] incorporates application-specific information in
state-space reduction policies to alleviate redundant interleavings
of messages, crashes and reboots. In Dara, we try to offer a prag-
matic approach of exploring states by searching for error traces in
the abstract state space and trying to map these error traces back
to the concrete state space to find bugs in systems.

In this work, I describe Dara, a hybrid technique that combines
the speed of abstract model checkers with the ease-of-use of trans-
parent model checkers, aimed at reducing developer effort to find
bugs in distributed systems.

2 APPROACH
Our approach for finding bugs only requires system source code,
names of important system variables, and the safety and liveness
invariants as input. The Dara pipeline is shown in Figure 1.

1.Log Generation — Dara infers a model of the system to find
bugs. Dara makes use of a transparent model checker that generates
logs of the system that capture the state of the system, as well as
the state of sent and received messages. Our transparent model
checker, GoDist, leverages the Go runtime as an interposition layer
between the application and OS to capture all system calls and
thread scheduling information. Specifically, GoDist logs the state of
processes during execution. For the logs to capture the state of the
system, we make use of automatic instrumentation, in which, all in
scope variables are logged at the entry and exit of each function.
Upon executing a sending, receiving, or local event, vector clock
timestamps [18] are attached to logged values.

2.Model Inference — Logs have been used to infer specifica-
tions of distributed systems [3, 15]. Dara aggregates logs of multiple
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Figure 1: Dara pipeline: An instrumented system and its tests are used to produce state traces. A model is inferred from these
traces and is coarsened using the user-provided variable IDs. SPIN checks themodel for violations of user-provided invariants
to produce likely bug traces which are then verified by a replay engine as real bug traces.

executions together for Finite StateMachine (FSM) generation. Each
state in the FSM corresponds to a unique combination of concrete
variable values at a point in the execution of the program. State
transitions (edges) are defined by the sent or received messages,
or important local events (syscalls, timers). However, the FSM con-
structed from the logs is too large and suffers from state space
explosion. Dara also uses Daikon [7] to infer invariants from these
logs which are used later in the pipeline to rank likely bug traces.

3.Model Coarsening— Dara uses a coarsening abstraction pro-
cedure in which the model is collapsed by matching FSM states on a
subset of variables which are specified by the user. By default all the
variables are used, as this gives us a whole view of the system. How-
ever, performing state matching on a subset of the variables, allows
Dara to mitigate the effect of variables like timestamps, buffers,
IDs, and ports whose values have a low probability of matching.
However, matching on a subset of state allows false positives in
property checking. To filter out false positives, Dara uses a model
accuracy heuristic which uses Daikon invariant violations.

4.AbstractModel Checking—The abstract model is converted
to a Promela [13] model and provided as input to the SPIN model
checker which generates error traces based on the provided safety
and liveness invariants. These error traces are then verified against
the previously inferred Daikon invariants for filtering. The key idea
is that fewer the number of Daikon violations, it is more likely for
that error trace to correspond to a real trace. The top n error traces
with the fewest invaraint violations are passed to the replay engine
to be verified as real bug traces.

5.Bug Trace Verification — The likely bug traces are passed
to our replay engine to be verified as real traces to weed out false
positive traces. The replay engine, GoDist-R, just like GoDist uses
the Go runtime as an interposition layer between the application
and OS. GoDist-R converts the the likely bug trace into a concrete
trace that is schedulable by the Go runtime. If the engine fails to

replay a trace, Dara reverts to system exploration by looping back
to Log Generation phase with GoDist.

3 EVALUATION & FUTUREWORK
Our Dara prototype consists of 6K lines of Go. We used Dara on a
200 line implementation of Dining Philosophers and successfully
identified fairness violations not present in existing logs.

We are actively developing Dara. Here we overview some of our
ongoing work.

State Space Exploration We will equip Dara’s transparent
model checker with state-of-the-art efficient schedule exploration
algorithms such as DPOR [8].

Extensive EvaluationWe will evaluate Dara on real systems
in production by checking important invariants. The candidate
systems include ETCD [5], a distributed key-value store which
uses Raft [21], and BTCD [4], an alternative full node Bitcoin im-
plementation written in Go. We will build on our prior work in
injecting bugs in ETCD [9] to find violations of strong leadership,
log matching, and leadership agreement invariants.

4 CONCLUSION
We have introduced Dara, a hybrid model checker for distributed
systems. Dara can be used to find valid, complex bugs faster as it
combines the speed of abstract model checking with the correctness
of transparent model checkers. We hope to demonstrate that Dara
reduces the developer burden in verifying system correctness.
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