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Graph-structured data is prevalent in domains such as social networks, financial transactions, brain networks, and protein interactions.

As a result, the research community has produced new databases and analytics engines to process such data. Unfortunately, there is

not yet widespread benchmark standardization in graph processing, and the heterogeneity of evaluations found in the literature can

lead researchers astray. Evaluations frequently ignore datasets’ statistical idiosyncrasies, which significantly affect system performance.

Scalability studies often use datasets that fit easily in memory on a modest desktop. Some studies rely on synthetic graph generators, but

these generators produce graphs with unnatural characteristics that also affect performance, producing misleading results. Currently, the

community has no consistent and principled manner with which to compare systems and provide guidance to developers who wish to

select the system most suited to their application.

We provide three different systematizations of benchmarking practices. First, we present a 12-year literary review of graph processing

benchmarking, including a summary of the prevalence of specific datasets and benchmarks used in these papers. Second, we demonstrate

the impact of two statistical properties of datasets that drastically affect benchmark performance. We show how different assignments of

IDs to vertices, called vertex orderings, dramatically alter benchmark performance due to the caching behavior they induce. We also

show the impact of zero-degree vertices on the runtime of benchmarks such as breadth-first search and single-source shortest path. We

show that these issues can cause performance to change by as much as 38% on several popular graph processing systems. Finally, we

suggest best practices to account for these issues when evaluating graph systems.
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1 INTRODUCTION

Graph structured data are used to express complex relationships in social networks[1], protein interactions [2, 3],

transportation networks [4], and many other domains. Graphs with billions of nodes and edges are common today [5], and

large-scale industrial applications often require running analytics on trillion-edge datasets [6]. The research community

has produced a constant stream of novel graph processing systems over the past decade to address these challenges.

These systems can be designed to distribute their data across a compute cluster[7–9] or to run on a single compute

node by optimizing the data access patterns - be it from memory [10, 11] or disk-resident shards [12–14]. Together these

decisions produce a vast design space with different graph processing systems representing just a single point in this

design space. Application developers thus face the problem of selecting a graph processing system appropriate for their

task.

This challenging task of selecting the appropriate graph system is further exacerbated by the fact that comparing graph

processing systems is difficult for several reasons.

First, there is a lack of robust standardization of benchmarking practices such as which metrics are important, how to

measure and report them, and how to do so in a reproducible manner. There have been several attempts at standardization

in the High-Performance Computation (HPC) community through the Graph500 [15] and GraphChallenge [16] benchmark

definitions. However, these benchmarks are not representative of the diversity of use cases of graph processing and neither

do they take into account the immense diversity of datasets that exist in the real world. The LDBC Graphalytics [17]

benchmark provides a richer set of datasets and benchmark kernels but remains underutilized in practice.

Second, most graph processing systems provide their own implementation of popular benchmark kernels. These

different implementations mean that when comparing the performance of two systems, it is difficult, if not impossible,

to attribute performance differences to the underlying system itself, the algorithm used for a particular kernel, or the

quality of the kernel’s implementation. For example, Galois [18] implements four different variations of PageRank [19],

each with different runtime performance. Additionally, there are many time-based metrics to compare PageRank: time

per iteration, time to run a fixed number of iterations, or time to convergence; different systems use different metrics in

their published results. We found that there is no single reference implementation of triangle counting on directed graphs

resulting in different graph processing systems reporting different numbers of triangles for the same dataset (§3.1.2) .

Third, there are few large representative graph datasets available for benchmarking, which limits the quality of results

being reported. For example, a distributed graph processing system that claims to be scalable should be evaluated

using datasets that are large enough to warrant distribution. However, we show that this is not true in practice; most

systems demonstrate scalability by using popular datasets from the SNAP and KONECT [20, 21] dataset libraries.

Twitter2010 [22, 23] is one of the largest, most frequently used datasets, yet in its uncompressed state is only 26GB -

smaller than the available RAM on a high-end laptop or a modest server. The dearth of publicly available large datasets

poses a significant problem that is frequently addressed via synthetic graph generators. The RMAT [24] and Kronecker

graph generators [25, 26] remain the most popular. However, these generators do not produce graphs that are representative

of real world graph datasets, which distorts performance [27].

Fourth, statistical properties of datasets produce hidden, uncontrolled effects at various steps of the graph processing

pipeline that drastically affects the performance on the systems. We demonstrate the effect of two such properties inherent

in the graph structure of datasets - vertex ID assignments (§3.1) and the presence of zero-degree vertices (§3.2), each of

which can introduce changes in key performance metrics such as runtime and cache behavior. Changing the vertex ID

assignment of a dataset can cause a performance difference of as much as 38% for the PageRank benchmark on several
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popular graph processing systems; the presence of isolated vertices can cause a 10x performance boost for benchmarks

such as BFS. Failure to identify these issues produces results that reflect idiosyncrasies of the experimental setup rather

than the fundamental behavior of the systems under evaluation.

Together, these challenges render system comparisons obscure, at best, and meaningless at worst. In addition to these

challenges, different developers might have different goals for their application: minimizing runtime, running within

a memory or cost budget, rapidly ingesting a stream of updates to the graph, etc. How can we, as researchers, help

developers make wise choices?

To help developers make wise choices about using, building, and benchmarking graph processing systems, we present

a systemization of knowledge surrounding the benchmarking of graph processing systems. Specifically, we present the

three following contributions. First, we provide a study of 12 years of published literature on graph processing systems

and algorithms that establishes the current status quo for benchmarking these systems. Second, we present empirical data

that illustrates the significance the properties of datasets can have on runtime, using four graph processing systems, the

most popular benchmarks, and the most widely used datasets identified in the literature survey. Finally, we provide a set

of principles (§4) to guide evaluation of graph processing systems.

2 12 YEARS OF GRAPH SYSTEM BENCHMARKING

8 Conferences
2011 - 2023

(10441 papers)

Corpus

(7455 papers)

Candidate 
Papers

(2068)

System 
Terms

Graph System
Papers (227)

1

Filter with
System Terms

2

Update
Filter

4

Read &
Extract

3
Filter with:

(graph | network)
&

(node | vertex | edge)

Fig. 1. Our procedure to identify contemporary graph system papers. 1.) Our corpus consists of papers published at 10 conferences
held between 2011 to 2023 and are pruned using common-sense graph terms. 2.) We filter our corpus with major graph system names
to obtain candidate papers. 3.) We read the papers and extract more graph system terms from them. 4.) We update the filter with the
new terms and repeat the process.

Each time we set out to conduct a performance evaluation including widely used graph processing systems, we

encountered contradictory and confusing results. Ultimately, we decided to catalog a decade of research in such systems,

which uncovered the host of problems discussed in the previous section.

2.1 Methodology

The volume of graph processing research and its generality raises questions as to what criteria define a graph systems

paper. Our choice of venues in which we search for papers is similarly ambiguous.

We resolve this ambiguity by clearly defining our ideal corpus and then methodically constructing such a corpus as best

we could. Ideally, we want to include every paper that describes a graph processing system and was published after 2010’s

Pregel, which is generally regarded as the first “vertex programming” system and a major motivator for recent research.

A “graph processing” system is an implementation that explicitly operates on graph-structured data and produces analysis

or query results. Therefore, any relevant paper should explicitly discuss graphs. We impose no generality requirements
Manuscript submitted to ACM
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Venue Years Total Graph Related Refers to System Presents System
GRADES 2013-22 113 110 71 22
KDD 2011-22 3316 2236 477 10
OSDI 2012-23 368 298 106 9
PODS 2011-22 359 258 57 0
SIGMOD 2011-22 1976 1350 456 63
SOSP 2011-21 217 177 56 8
VLDB 2011-22 2574 1729 505 86
NSDI 2011-23 638 541 233 8
EuroSys 2011-23 485 467 99 16
FAST 2011-23 395 289 8 5
Total 2011-23 10441 7455 2068 227

Table 1. Venues used in the study and the results of the paper selection pipeline.

on such a system; therefore, an implementation of a single-purpose graph algorithm is a graph processing system; any

graph mining paper describes a graph processing system. Conversely, a general-purpose processing framework that “can”

implement graph algorithms is not within our scope unless some paper explicitly discusses those graph algorithms. For

example, we include a paper in our corpus that presents new relational algebra operators for processing graph-structured

data [28], while we discard a paper that presents an optimization on Gradient Descent [29].

We did our best to adopt a consistent method in our paper search, but ultimately our judgment and expertise do play

important roles in the search process. Inevitably, some distance will exist between our experience and the aggregated

experiences of our readers. This could be construed as a sampling error or noise; the nature of such “error” changes with

the expectations of the reader. Rather, we encourage the reader to read this paper as an autopsy and diagnosis of some

limited, but relatively unbiased, subset of the graph processing community.

2.1.1 Selecting Papers. We began by downloading the full proceedings from the venues indicated in Table 1 (10441

papers). We followed this step with a recursive filtering process, which uses an expanding set of graph systems (our search

phrases), that continues until it produces no new systems.

In the first step, we filtered the corpus to identify papers that might be related to graph systems. To do that, we devised

the following simple rule as a first-level filter: a paper might be graph-related if it contains the terms graph or network

and any one of node, vertex, or edge. This first-level filtering produces an initial set of papers that are likely related to

graph processing. At the end of this stage, we were left with 7455 papers.

In the second level filtering, we use the reduced corpus from the first stage, and search for Giraph, GraphLab, GraphX,

PowerGraph, and Pregel - which we consider to be the first few important graph systems. We then manually inspect all

the papers containing these seed phrases to find new graph systems. We add each newly found graph system to the set of

seed phrases and iterate until we stop finding new systems.

This methodology suffers from several flaws - not all systems are named, many papers discuss the same system or

name systems that are outside our initial corpus, and the selection of papers in the filtering process suffers from the

writers’ bias. Therefore, there is no one-to-one mapping between papers and search terms. We present this metastudy as a

review of a limited subset of the graph processing community. However, this process, illustrated in Figure 1, identified

2068 papers, from which we manually identified 227 papers that describe systems or algorithms that process graph data.

Manuscript submitted to ACM
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Fig. 2. Frequency of usage of datasets and benchmarks that appear in our 227 paper corpus. The red axis shows the number of
papers that use that particular dataset or benchmark. The blue axis shows the CDF of the percentage of the usage of a particular
dataset or benchmark out of the total usage of the total usage of all datasets or benchmarks across our paper corpus.

Fig. 3. The frequency of co-usage of the top-10 benchmarks and top-10 datasets

2.2 Findings

For each of the 227 papers, we manually determined all the benchmarks and datasets used in its evaluation. This process is

necessarily manual, because there is a significant entity linkage concern regarding benchmarks and datasets. For example,

a paper might reference a “KONECT Wikipedia dataset”, but in fact there are numerous Wikipedia datasets on KONECT

and the specific dataset can be identified only by its vertex and edge counts. This is further complicated by variations

in the reported vertex and edge counts of identical datasets - we encounter papers that reference names that refer to

non-specific datasets as well as specific datasets with varying features.

2.2.1 Datasets. We identified 331 different datasets used in our corpus. However, fewer than 5% of these datasets have

been used in more than 10 papers. The top 10 datasets account for over 37% of all datasets used. Figure 2 shows the usage

of the various datasets across research papers. On average, a dataset is used in only three different papers.

The most widely used dataset, appearing in more than one-third of the research papers in our corpus, is Twitter2010 [23].

This is problematic in a couple of different ways. First, papers report different numbers of edges for Twitter2010 [30, 31].
Manuscript submitted to ACM
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Second, there are (at least) two different Twitter datasets and some papers in our corpus simply refer to “the Twitter

dataset.” There is a second Twitter dataset from MPI [32], which has 10 million more vertices and 200 million more

edges than Twitter2010 [23]. While this inconsistency might not cause problems if all comparisons are done with the

same dataset, it can be problematic to compare systems that do not make their artifacts publicly available.

As can be seen in Figure 3, social network datasets and synthetic graphs (that produce a large social network-like graph)

are the dominant graph type used for comparative benchmarking. The large skew in degree distribution of such graphs is

a useful tool to test the partition quality of a distributed graph processing system and examine its load-balancing scheme.

However, not all graphs possess similar degree skew, and not all graph processing systems are designed to be distributed.

There are other statistical properties of a dataset that can determine its utility in stressing different graph processing

systems - large diameter, sparsity (number of edges per vertex), average triangle count per vertex, and maximum in- and

out-degrees to name a few. These are often ignored in favor of selecting the largest graph researchers can find. For instance,

Besta et al. [33] identified that Flickr [34] and Livemocha [35] have similar node and edge counts and diameters but

vary greatly in the performance characteristics for 4-clique mining due to the large difference in the number of triangles

(indicative of clustering property). A social network such as Livemocha should have a few 4-cliques of friendships, but in

a network such as Flickr, where related photos share some metadata (such as location), 4-cliques should be common.

Graph Mining Suite [33] presents a better approach to selecting appropriate datasets for benchmarking: emphasizing a

rich diversity of dataset origins and selecting them in a way that enhances the represented statistical properties.

Most disturbingly, we found that the Netflix dataset is one of the top 10 most widely used datasets, even though it

is illegal to distribute this dataset and arguably unethical to experiment with it. The dataset contains recommendations

by users who were later deanonymized by researchers [36]. Both an FTC inquiry and a class action lawsuit that Netflix

settled in 2010 [37] caused Netflix to cancel further competitions and withdraw the dataset, whose license clearly states

that it cannot be redistributed without permission. Nevertheless, between 2010 and 2023, nine papers in our corpus had

used this dataset. This practice must stop.

Less legally and ethically troubling, but more technically troubling, is the fact that we found inconsistencies in the

number of vertices and edges reported for the datasets across the papers. This makes interpreting results tricky as one

can’t be sure if two papers use the same dataset.

This issue of inconsistently sized datasets is exacerbated by the practice of simply naming datasets without reference.

In our corpus we found twelve different variants of “the Wikipedia dataset”; we were unable to locate five of them even

after extensive web searching. Four of the remaining Wikipedia datasets simply cited KONECT as the source of the

dataset but KONECT has 37 different “Wikipedia datasets”. Similar issues arose with datasets named uk-20XX; some

papers cite them only as “the uk dataset”. In our corpus, we found at least four different uk datasets being used. On further

investigation, we found that Laboratory for Web Algorithms [38–40] is the source of the uk datasets and has 14 different

uk datasets.

2.2.2 Synthetic Graph Generators. Real graph datasets are usually small in size and often fit in memory. In the absence

of readily-available truly large graphs, researchers rely on synthetic graph generators to such an extent that graph datasets

generated from RMAT or Kronecker graph generators [10, 24–26, 41, 42] are the third most commonly used source for

datasets.

Despite their popularity, default Kronecker generators are not well-suited for benchmarking graph processing systems

as these generators produce graphs with unrealistic node degree distributions inducing a “combing effect” [27]. To rectify

this, researchers developed Noisy Kronecker models that add uniform random noise to the graph generation process to fix

Manuscript submitted to ACM
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Fig. 4. Partitionability of graphs generated by Smooth Kronecker compared to graphs generated by Noisy Kronecker generators

the degree distribution problem [43]. But graphs generated by Noisy Kronecker models generate graphs that are more

easily partitionable than the original graph the generator models. Smooth Kronecker [27] is a synthetic graph generator

that fixes the “combing effect” without adding any noise in the generation process. Additionally, Figure 4 shows that there

is no difference in the partitionability of the graphs generated by the Smooth Kronecker model and the original graphs.

The Smooth Kronecker graph generator produces graph datasets that are better suited for benchmarking graph processing

systems.

However, none of these graph generators were designed to generate graph datasets that evolve over time. With modern

cloud applications increasingly operating on real-time evolving data, dynamic graph algorithms have been developed that

operate on dynamic graphs. To the best of our knowledge, there exists only one graph generator, DyGraph [44]1 that

produces graph datasets for benchmarking dynamic graph algorithms.

2.2.3 Benchmarks. We identified 173 unique benchmarks in our corpus; only ∼5% (4.6%) of the benchmarks have

been used in more than 10 papers and the 10 most frequently used benchmarks account for 49% of all benchmark usage.

Figure 2 shows the distribution of the various benchmarks used by the papers in our corpus. On average, a benchmark is

used in only three different papers; only a select few are widely used. This use of bespoke benchmarks makes it difficult

to understand precisely what is being measured or gain any intuition about the system under study.

PageRank, used in over 54% of the papers, was the most popular benchmark. However, there are two fundamentally

different ways to compute page rank. Some systems compute page rank at each vertex for a fixed number of iterations,

while others compute page rank until the PageRank values converge. In our corpus, over 55% of the PageRank usages

report the elapsed time for either a single iteration or for a small, fixed number (usually 10 or 20) of iterations. About 20%

of the papers using PageRank as a benchmark reported the time it took for PageRank to converge, while the remaining

25% just report “runtime” without any further specification about whether the benchmark runs for some fixed iteration

count or until convergence.

Even comparing results that all measure time for a specified number of iterations is challenging. Usually, each iteration

updates each vertex exactly once; however, some newer systems use asynchronous methods that run on every vertex as

often as new data becomes available, or they prioritize vertices that are far from convergence. In contrast to the fixed

iteration setup, an asynchronous implementation typically runs until the page ranks for vertices are within a target tolerance

of convergence. Synchronous PageRank implementations are so common in contemporary graph systems evaluation that

it discourages comparisons to asynchronous implementations of PageRank. For example, PowerGraph (2012) [8] was one

1Available at https://adacenter.org/dygraph
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of the first vertex programming systems to support asynchronous execution. However, in their comparative evaluation

they only benchmark synchronous PageRank, because prior works measured and published “per-iteration” runtimes that

are defined only for synchronous implementations.

The authors of GraphMat (2015) [45], an iterative Sparse Matrix Vector Multiplication (SPMV) system, use Syn-

chronous PageRank to compare to PowerGraph and Galois, concluding that GraphMat is 2.6X faster per-iteration than

Galois. This factor is comparable to the difference between the best synchronous and asynchronous implementations in

Galois. Galois outperforms GraphMat on every end-to-end runtime measure but underperforms on every per-iteration

measure, from which GraphMat’s authors conclude that, on average, they outperform Galois; this claim is almost entirely

due to synchronous PageRank results. To be clear, GraphMat’s evaluation followed conventional best practices and was

consistent with prior work. Our concern is that consistency with prior evaluations has brought the field to a state where

the most popular comparative benchmark discriminates against alternative and arguably superior solutions.

Such inconsistencies are also visible in recent papers on dynamic graph processing systems. These systems support

fast analytic performance in the presence of modifications to the graph [46]. For example, LLAMA [47], GraphOne [48],

and Teseo [49] are three such systems, published in 2015, 2020, and 2021 respectively. The GraphOne paper claimed

to be 4x faster than LLAMA in PageRank workloads, however, the Teseo paper (published after the other two) showed

that LLAMA was consistently faster than GraphOne in PageRank (by up to 3x). Such inconsistencies demonstrate that

various experimental features such as the degree of parallelism, hyperparameter settings, dataset characteristics (e.g., the

size and topology of the graph), or implementation of algorithms can significantly affect performance.

Without being fully aware of what workload characteristics are important and how systems perform with respect to

them, it is impossible for practitioners to identify the right system. Hence, there is a need for standard benchmarking

specifications that, at a minimum, explicitly state all the relevant features, and better yet, evaluate systems under a range

of them.

2.2.4 Co-occurence of datasets and benchmarks. Figure 3 shows the co-occurrence frequency of the most commonly

used top eleven datasets and benchmarks. Using PageRank on the Twitter2010 [23] dataset is, by far, the most popular

choice in our corpus. This substantiates the claim made by the Naiad authors in 2013 that “several systems for iterative

graph computation have adopted the computation of PageRank on a Twitter follower graph as a standard benchmark” [50].

Unfortunately, the publishers of the Twitter2010 dataset have reported that “Twitter2010’s follower-following topology

is substantially different from other social networks in terms of its non power-law degree distribution, short-effective

diameter, and lack of reciprocity” [22]. This makes the results obtained for running various benchmarks on PageRank and

Connected Components not generalizable to other social network datasets.

The popularity of the Single-Source Shortest Path (SSSP) benchmark with unweighted datasets such as Twitter2010 [23]

and soc-LiveJournal [51] is equally surprising as SSSP requires edge-weights. When using this benchmark with these

data sets, researchers produce weighted datasets from unweighted datasets by assigning random weights to the edges.

Details of the randomization and the weights are never documented. This make it impossible to reproduce the results for

SSSP benchmarks.

Triangle Counting is another popular benchmark used in 16% of our papers. Triangle Counting is well-defined

on undirected graphs but is ambiguous for directed graphs. In a directed graph, a triangle counting kernel can count

either cycle triangles or trust triangles. Given that the top 10 most popular real graph datasets are directed, using a

triangle counting kernel intended for undirected graphs on directed graph datasets is an example of a mismatched

dataset-benchmark combination.

Manuscript submitted to ACM
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(a) (b)

Fig. 5. (a) shows the use of the top-10 datasets across conferences; (b) shows the use of the top-10 benchmarks across conferences.
We omit PODS as there is no paper from PODS in our corpus.

2.2.5 Conference Conformance Bias. Figure 5a and Figure 5b show dataset and benchmark use across conferences. Each

box represents the percentage of graph papers at that conference that used a particular dataset/benchmark. A co-occurrence

correlation exists between the papers accepted to a conference and the benchmarks used in that work. As can be seen in

Figure 5b, for example, more than 50% of the graph papers at SOSP, FAST, and EuroSys used PageRank as a benchmark.

Similarly, there is also a preference exhibited by the conference venue towards some datasets as can be seen in Figure 5a.

Papers accepted at KDD tend to overuse the Twitter2010 [23] and yahoo-webscope datasets. 55% of the papers at OSDI

use the uk-2007 [52] dataset, which is at least 40% more than the usage of this dataset in any other conference.

These results indicate the overuse of certain datasets and benchmarks and the use of these together in preferred pairs.

Conference Period Graph Papers
Artifact
Available

Artifact
Evaluated

Result
Reproduced

SOSP 2019-21 3 (92) 1 (59) 2 (46) 1 (39)
OSDI 2020-23 1 (205) 1 (135) 1 (131) 1 (113)
EuroSys 2021-23 6 (137) 2 (85) 2 (69) 0 (42)
SIGMOD 2016-17 17 (341) 0 (14) 0 (8) 0 (22)
SIGMOD 2018-19 11 (385) NA NA 1 (17)
SIGMOD 2020-22 22 0 (54) 0 (55) 0 (54)
VLDB 2018-19 16 (483) NA NA 0 (3)
VLDB 2020-22 23 (676) 8 (302) NA 0 (6)

Table 2. Artifact evaluation badges awarded to graph processing systems at various conferences. NA indicates that the conference
did not hand out that specific badge during the specified time period. Numbers in parentheses show the total numbers for the
conference in the specified period. (Artifact Evaluated column indicates the Reusable badge for SIGMOD and the Functional badge
for other conferences).

2.2.6 Artifact evaluation of graph processing systems. There has been a strong push for artifact availability and result

reproduction in the database and systems community, and most conferences we surveyed have an artifact evaluation effort.

There are however shortcomings to this approach - not all artifacts can be made publicly available for legal reasons, and

the evaluated artifacts and results are not a citable entity. This problem is pervasive to all science, and the data science

community has taken the lead in fixing the problem of dataset and code availability by creating repositories such as
Manuscript submitted to ACM



10 Mehrotra and Anand, et al.

Processing System Version

Galois [18] Commit 7f20a9131667
GraphChi [12] Commit 6461c89f217f
Gemini [11] Commit 170e7d36794f
Ligra [10] Commit 64d7ef450a22

Table 3. Versions of Graph Processing Systems used in experiments

Zenodo [53] and Dataverse [54]. The Data Management and Systems communities can follow their lead and recommend

that published papers come with citable and accessible datasets and software, detailed usability instructions, and the

environmental setup needed to reproduce results.

Table 2 shows the artifact evaluation badges awarded to the papers in our corpus by various conferences. We consider

only those time periods in which a conference ran an artifact evaluation procedure. Out of the 55 papers that could have

obtained the “Artifact Available” badge, less than one-fourth (12) papers were awarded the badge. Shockingly, out of the

99 papers that could have obtained the “Results Reproduced” badge, only three papers were awarded the badge. Note that

the badges are only awarded if the authors of a paper explicitly sign up for the artifact evaluation process. The absence of

a badge does not necessarily mean that the paper’s artifact might not be publicly available or that its results might not

hold.

3 QUANTITATIVE STUDY

The previous section described many of the problems we encountered in the empirical work on graph processing systems.

This section provides a quantitative demonstration of the severity of these problems. Specifically, we focus on performance

discrepancies caused due to vertex isomorphisms (i.e., different vertex ID assignment) and the presence of zero degree

vertices.

For our quantitative study, we chose four popular graph processing systems - GraphChi [12], Ligra [10], Galois [18],

and Gemini [11]. We chose these systems as they are popularly used and cited and have well-documented open-source

implementations available for a wide variety of benchmarks. Table 3 shows the versions of the graph processing systems

used in our experiments.

All of the results reported for GraphChi, Galois, and Gemini were collected on an Intel i7-core 3.1GHz processor

machine with 32GB of RAM. All of the results reported for Ligra were collected on an Intel(R) Xeon(R) 8-core CPU

E5-2407 v2@2.4 GHz processor with 98GB of RAM, due to Ligra’s higher memory requirements.

3.1 Effect of Vertex Orderings

Many graph processing systems, quite reasonably, process vertices in order of their unique IDs. However, for any

graph, there exist many isomorphic graphs that can be obtained simply by renumbering the vertices. We define a Vertex
Ordering of a graph dataset as one particular assignment of vertex IDs to the vertices in the graph. We demonstrate that

this is primarily due to the fact that different Vertex Orderings produce different cache behavior, which in turn, leads to

sometimes significant performance differences.

Reordering graphs is not limited to renumbering vertices as different orderings of edges can also impact performance.

In prior work, McSherry et al [55] show that “Hilbert Ordering” of the edges produces better performance results than the

Manuscript submitted to ACM
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default order of most datasets. The effects of reordering graphs are so profound and surprising that there is active research

into developing lightweight and efficient re-ordering schemes to speed-up graph processing [56–60].

We demonstrate the performance impact of vertex orderings only; McSherry et al [55] already demonstrated the impact

of edge orderings. We describe a small subset of the various Vertex Orderings that can be used in benchmarking graph

processing systems. We choose these Vertex Orderings as they are either popular or have well-defined semantics that

provide some robustness guarantees. The Vertex Orderings are as follows:

• Default: Ordering that the dataset “ships” with. We find that this default ordering tends to be either overly optimistic

or overly pessimistic in terms of cache behavior.

• Degree: Ordering where the nodes are assigned IDs in ascending order of their degree.

• Revdegree: Ordering where the nodes are assigned IDs in descending order of their degree.

3.1.1 Effect on Benchmark Performance. We demonstrate the effect of vertex order on runtime and cache behavior using

the most widely used benchmarks (Pagerank until convergence) on the most widely used dataset (Twitter2010 [23]), using

three different Vertex Orderings (default, degree, and revdegree) across different graph processing systems. We do not

present any results for Ligra on Twitter2010 [23], as none of the runs completed after one full week.

To ensure a fair comparison between single-threaded and multi-threaded graph-processing frameworks, we report

runtime as the total “user” time across all threads. We run our experiments on a hot cache, to produce accurate cache

measurements. We warm the cache by completing one run of the benchmark on the dataset. We eliminate the effect of

random noise by running each benchmark on each isomorphism 25 times and report the mean and standard deviation for

the runtime and the cache miss rate.

Figure 6 shows the results of running different implementations of PageRank algorithm with Galois, Gemini, and

GraphChi on the Twitter2010 [23], citPatents [61], and soc-LiveJournal [51] datasets. We found that Degree Ordering

seems to be the best ordering across the graph processing systems for the Twitter2010 [23] dataset. However, it seems that

the best ordering for other datasets varies across systems. These results also illustrate that benchmark performance is

correlated with the cache behavior of the vertex ordering. In our experiment, Degree Ordering for Twitter2010 [23] yields

a speedup of nearly 40% compared to Default Ordering. This suggests that researchers must be careful when comparing

results across systems for any dataset, as the choice of different orderings for the same dataset can produce significant, yet

misleading, results.

The difference in performance due to Vertex Orderings is not just present across systems. Even in the same system,

various implementations of the same algorithm can produce drastically different results on the same dataset. This issue

is even more complicated, because different orderings produce best results for different algorithms. Figure 7 shows the

runtime for different vertex orderings for all the different implementations of PageRank and ConnectedComponents in

Galois. We show the results for Galois as it has the greatest number of different implementations for each benchmark. In

a Bulk Synchronous Parallel (BSP) system, a thread computing RageRank, for example, can "Pull" updates from it’s

neighbors, or "Push" updates to it’s neighbors [62]. According to the Galois manual, “the pull variants perform better than

the push. The residual version performs and scales the best since it is optimized for improved locality and use of memory

bandwidth". The official Galois documentation and papers [63] provide more information about these algorithms and

scheduling strategies.

Vertex Orderings can induce significant runtime differences. In particular, default orderings are frequently overly

optimistic or overly pessimistic, so we should understand the default ordering as well as the impact that it can have on the

system. In particular, it is essential that researchers avoid inadvertently using different orderings on different systems.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Speedup attained on PageRank on Twitter2010, citPatents, and soc-LiveJournal with Galois, Gemini, GraphChi, and Ligra for
Degree and Revdegree orderings as compared to the Default Ordering. We do not present results for running Ligra’s PageRank on
Twitter2010 as it did not finish within a 7-day time period.

3.1.2 Effect on Benchmark Correctness. Theoretically, the various vertex orderings should have no impact on the

correctness of the algorithm. However, we found that for certain systems, the various Vertex Orderings can produce

different incorrect results for triangle counting. Triangle Counting on Ligra produces different numbers of triangles for

the same directed graph with different Vertex Orderings. On further inspection, we found that this is a symptom of a

larger problem: there is no standard approach to triangle counting in directed graphs.

We found at least two definitions of triangles on directed graphs: cycle triangles and trust triangles (when two connected

vertices both have directed edges to a third common vertex) [64]. Figure 8 shows two SQL queries that compute the
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(a) (b)

(c) (d)

Fig. 7. Effect of Vertex Orderings on performance of various algorithms for running PageRank and ConnectedComponents with
Galois on Twitter2s010 dataset.

Source citPatents [61] soc-LiveJournal [51] Twitter2010 [23]

GT: Cycle Triangles 0 234455819 44738118599
GT: Trust Triangles 7515027 946400853 143011093363
GT: Cycle + Trust Triangles 7515027 1180856672 187749211962
Galois (NI) 264897 132859748 22849431223
Galois (EI) 188649 122558230 23027408359
Ligra 7514962 187551052 DNF
GraphChi 7515023 285730264 34824916864
Snap Website 7515023 285730264 NA

Table 4. Number of Triangles reported by various graph systems for popular datasets. Rows marked with GT indicate the ground
truth we calculated using the queries defined in Figure 8. DNF indicates that the benchmark did not finish in time. NA indicates that
number of triangles was not available for a particular dataset.

number of trust and cycle triangles on a graph represented by an edge table, where each tuple in the edge table represents a

directed edge. We compute the “ground truth” number of triangles in a given dataset using these queries and compare the

results to those obtained from a brute force implementation that runs over a text-based, edge-list representation, common

to many published graph datasets. The bottom two rows of Table 4 show the number of cycle and trust triangles obtained

from running these queries on citPatents [61], soc-LiveJournal [51], and Twitter2010 [23].
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--Trust Triangle Count

SELECT COUNT (*)

FROM edges e1

JOIN edges e2 ON e1.dst = e2.src

JOIN edges e3 ON e2.dst = e3.dst

AND e3.src = e1.src

--Cycle Triangle Count

SELECT COUNT (*)

FROM edges e1

JOIN edges e2 ON e1.dst = e2.src

AND e1.src < e2.src

JOIN edges e3 ON e2.dst = e3.src

AND e3.dst = e1.src

AND e2.src < e3.src;

Fig. 8. SQL queries to compute two different types of triangles for directed graphs

However, we found that popular graph processing systems do not count cyclical or trust triangles correctly on directed

graphs. We found only one paper [31] that specifies counting trust triangles for their triangle counting benchmark on

directed graphs. Disturbingly, triangle counting implementations of these systems differ sufficiently that running them on

identical datasets produces different numbers of triangles, as shown in Table 4. Galois’s triangle counting benchmark

assumes that the graph is undirected, and when run on directed graphs, the benchmark’s behavior is essentially undefined.

This undefined behavior is elegantly depicted by the fact that Galois’ two implementations of triangle counting, Node

Iterator and Edge Iterator, report different numbers of triangles. Ligra enforces no such restriction and measures trust

triangles. Unfortunately, their implementation depends on vertex ID order. (A trust triangle is counted only if the directed

edges go from a higher numbered vertex ID to a lower numbered vertex ID.) Thus, two graphs that are identical, except

for vertex relabeling (that is, two isomorphic graphs), will yield different triangle counts. Note that for undirected graphs,

the different systems report the same number of triangles.

Additionally, one paper in the corpus uses an approximate triangle counting algorithm based on top-n eigenvalues

called EigenTriangle [65]. As this is an approximate algorithm, it will not yield 100% accurate results all the time. We

have no insight as to how many other papers in our corpus might have used this or another approximate algorithm as the

use of approximate algorithms is not documented in these papers.

3.2 Effect of Zero-Degree Vertices

Dataset Total Vertices Zero-Degree Vertices Non Zero-Degree Vertices % of Zero-Degree Vertices
Twitter2010 [23] 61578414 19926184 41652230 32
citPatents [61] 6009554 2234786 3774768 37
soc-LiveJournal [51] 4847570 0 4847570 0
friendster [66] 124836179 59227813 65608366 47
uk-2007-05 [52] 105896434 677865 105218569 6

Table 5. Total number of vertices and zero-degree vertices in popular datasets

Zero-degree vertices, or isolated vertices, have neither incoming nor outgoing edges. In graph datasets, these vertices

do not appear in edge lists, but their IDs lie within the range of the minimum and maximum vertex IDs. Table 5 shows the

total number of vertices and the number of zero-degree vertices of popular datasets. The large number of zero-degree

vertices in the Friendster dataset [66] explains why some describe the dataset as a 124 million node graph [67], while

others describe it as a 65 million node graph [68]. Zero-degree vertices affect benchmark results in myriad ways.

3.2.1 BFS and Zero-Degree Vertices. As mentioned in §3.1, the BFS ordering is ill-defined, because many real-world

graphs do not have a natural root node. In the absence of any natural root, many graph processing systems [10, 11, 18]
Manuscript submitted to ACM



SoK: The Faults in our Graph Benchmarks 15

Fig. 9. BFS performance comparison between starting with a zero-degree vertex and a non-zero-degree vertex.

use the vertex with ID 0 as the default root and vertex with ID 1 as the target node. However, chaos ensues in some

benchmarks if that first vertex happens to be zero-degree node, as is the case in three of the five datasets in Table 5.

Figure 9 illustrates the effect of choosing a zero-degree vertex versus a non-zero-degree vertex as the starting node

for the BFS benchmark on Galois and Gemini. We randomly select 20 different non-zero-degree vertices from the

Twitter2010 [23] dataset and measure BFS runtime starting from that node on Galois’s serial-mode and parallel-mode

BFS and on Gemini. For Gemini, we use the authors’ built-in measurement mechanism, which measures the end-to-end

runtime and not the time spent by all threads. As Figure 9 shows, choosing a zero-degree vertex on Twitter2010 [23]

produces a 6x-7x speedup on Galois and nearly a 10x speedup on Gemini.

As most reported results in the literature fail to report either their Vertex Ordering or their BFS start node, it is virtually

impossible to extract meaning from such results. Based on our experiments, we hypothesize that the BFS results shown

in the comparison of Galois and Ligra in the original Galois paper [18] are using zero-degree BFS time as both Ligra and

Galois have the same runtime on Twitter2010 [23] which, in our experience, happens only if they are using the vertex

with ID 0 as the root node, which the implementations of both these systems indeed do by default.

Fig. 10. Speedup obtained on Triangle Counting with GraphChi after removing zero-degree vertices from RMAT generated graphs
with scale ranging from 16 to 26.

3.2.2 Effect on Triangle Counting. While zero-degree vertices are most problematic for benchmarks that use a start

node, they also have an effect on other benchmarks. To better understand the effect of removing zero-degree vertices, we
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generated 11 RMAT graphs with “scale” ranging from 16 to 26 with an “edgefactor” of 26. In an RMAT graph, |V | = 2scale

and |E| = |V |×edgefactor. However, these vertices also include zero-degree vertices, and increasing scale increases

both the absolute number and proportion of zero-degree vertices. Figure 10 shows the effect of removing zero-degree

vertices when running Triangle Counting on GraphChi. Increasing the scale factor (X-axis) increases both the “size of

the graph” and the fraction of zero-degree vertices. Figure 10 shows that the speedup obtained from removing these

zero-degree vertices seems to grow exponentially once the graph becomes sufficiently large (i.e., at scale=23). This is a

concern, considering that in the absence of real data for large graphs, researchers increasingly rely on synthetic generators.

If a particular system were to remove the zero-degree vertices during preprocessing, the system could potentially produce

speedups of more than 30%.

(a) (b)

Fig. 11. Effect of removing zero-degree Vertices from citPatents Dataset; for running PageRank benchmark using Galois, GraphChi,
and Ligra

3.2.3 Effect on PageRank and ConnectedComponents. Removal of zero-degree vertices can also produce speed-up for

PageRank and Connected Components. Figure 11 shows the speedup gained on PageRank and Connected Components by

removing zero-degree vertices from citPatents [61] in Galois, GraphChi, and Gemini. We use the Push-Sync algorithm for

PageRank, and we measure the time until convergence. Notice that for both benchmarks, removing zero-degree vertices

can produce a speedup of up to 13%. Thus, we would advise that researchers be wary of the impact of zero-degree vertices

when evaluating systems on different benchmarks.

4 BEST PRACTICES

Based on our findings from the literature study in §2 and impact of dataset properties on benchmark performance in §3,

we propose a set of best practices for benchmarking graph processing systems.

Standardization: To overcome the lack of diversity in the datasets and benchmarks used, the community should

develop a rigorously specified set of standardized benchmarks and should publish more well-described, large datasets.

A rigorous benchmarking approach would be to use a mix of real-world and (well-constructed) synthetic datasets of

varying topologies. As identified by Besta et. al.[33], it is critical to use datasets of different origins (e.g., road networks,

social networks, biological networks, etc.) to evaluate graph processing systems. The current practice of poorly matched

dataset-benchmark combinations will undoubtedly propagate to future research through citation networks, unless we

promote constructive diversity in benchmarking practices.
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Synthetic Graph Generators: For generating large graphs for evaluating the scalability of graph processing sys-

tems, researchers should use the Smooth Kronecker graph generator [27] instead of other RMAT or Kronecker graph

generators.

Dataset Hashes: Dataset providers should publish hashes of their datasets, and authors should report them. In ad-

dition to publishing and citing hashes, the community needs to use standard names and DOIs.

Detailed Metrics: As recommended in GAIL [69], benchmarking efforts and reporting should be expanded to in-

clude more detailed metrics about kernel execution time, the amount of algorithmic work (number of edges traversed

per kernel), cache effectiveness (the number of memory requests made per edge traversed), and the memory bandwidth

utilization (time taken per memory request).

Preprocessing: Preprocessing the datasets constitutes a significant part of the overall runtime of graph processing

systems. The preprocessing time can often be amortized if the same data format is used for several tasks and if the graph

doesn’t evolve too rapidly. However, it is critical to measure and report the preprocessing overheads so that users can

make an informed choice about how well-suited the system is to their workload and dataset.

Additionally, it is vital to report what preprocessing steps a system undertakes (removing zero-degree vertices, for

instance). Reporting the preprocessing steps carried out of a dataset and the time these steps take must be incorporated

into the benchmarking suites and general best practices.

PageRank Usage: When using the PageRank benchmark, there are two ways to report the system’s performance:

the time taken for the PageRank values to converge to a tolerance value or the time taken to complete a fixed number

of iterations. We recommend using the time to converge to a tolerance as the reported PageRank performance. Time

to convergence is a more robust metric because it is meaningful for both synchronous and asynchronous modes of

computation [70] It is also more widely used with newer algorithms that track active vertices in each iteration.

However, these metrics alone cannot explain which choices (the system itself, the PR algorithm being used, or the

hardware) most impact performance. If an optimized version of PR is used, for example, one that maintains active vertices

for each iteration, the runtime indicates the choice of a superior implementation as much as the system’s ability to traverse

the graph efficiently. Reporting the convergence time alone conceals that the algorithm traverses fewer edges with each

iteration. The performance measurement would be more robust when coupled with information about the total number

of edges the algorithm traverses. Traversed Edges Per Second (TEPS) alone is not sufficient and can be misleading, so

ideally a deeper measurement of the kernel performance should be performed, as detailed in section §5.2

Benchmark & Dataset Selection: Benchmark selection and Dataset selection are not separable; researchers should use

datasets appropriate for the benchmark or the system property (scalability, for instance) that needs to be elided. While there

are no strict rules defining what datasets are "appropriate" for a specific benchmark, researchers should aim to incorporate

a variety of datasets that challenge their system and reveal potential bottlenecks. While large datasets are frequently

selected to showcase scalability, merely assessing graph size is inadequate for predicting its effectiveness in stressing

the system. Other factors like degree skewness, sparsity, diameters, and locality (defined as preferred) are valuable in as-

sessing system performance, and therefore, the chosen datasets should encompass a broad spectrum of these characteristics.
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Triangle Counting: Researchers who use triangle counting as a benchmark must specify A) whether the graph is

directed or undirected, B) if directed, whether they are counting cyclical triangles, trust triangles, or both, and C) the

algorithm being used and whether it computes exact or approximate triangle counts. An exact triangle counting implemen-

tation should never return different counts depending on the IDs assigned to vertices. We encourage the community to

adopt trust triangles as the official definition of a triangle in directed graphs, as the definition of a trust triangle is entirely

independent of the dataset’s vertex ordering.

Vertex Orderings: To nullify the impact of different vertex orderings, researchers must report the ordering used.

We recommend that researchers show results for at least three different orderings: default (i.e. the same ordering as on the

data source), Degree, and RevDegree. Under no circumstances should researchers use different orderings of the same

dataset for different systems.

Correct Start Nodes: Any benchmark whose results depend on a start node should ensure that their start nodes

are not zero-degree and report the start node(s) used unambiguously.

Handling Zero-Degree Vertices: To deal with the hidden effects of zero-degree vertices, researchers should use

packed representations that remove zero-degree vertices from datasets. Additionally, researchers should explicitly state

the total number of vertices and the number of zero-degree vertices in their datasets.

Artifact Availability: Authors of graph processing papers should, at the very least, make their artifacts publicly available

via the Artifact Evaluation procedure. As part of the artifact, they must include their system, all preprocessing steps, and

DOIs to datasets they used as part of their evaluation.

5 RELATEDWORK

One of the earliest warnings about improper use of datasets and benchmarks comes from Sebastiano Vigna [71] when

he discussed how using PageRank as a benchmark is “interesting” only on “large” datasets. Since then, it has become

common knowledge that benchmarking large graph processing systems is difficult. This is best captured in the LDBC

vision paper [72]: The authors describe the challenges that arise from the diversity in datasets, algorithms, and platforms

used in graph benchmarking. Owing to this difficulty in gaining clear insights into the system and its performance, several

attempts have been made to compare different graph processing frameworks in a more standardized setup. Experimental

studies, such as the one by Nadathur et al. [73], compare graph processing systems precisely and shed much-needed light

on the performance characteristics of these systems. The authors first establish benchmark baselines using hand-optimized

code and then compare the performance of graph frameworks on these benchmarks. They use it to “delineate bottlenecks

arising from algorithms themselves vs. programming model abstractions vs. the framework implementations.”

The remainder of this section examines important prior work that called for better benchmarking practices, often

suggesting new metrics and frameworks to do so and why academia remains stubbornly opposed to using them.

5.1 COST: Overreliance on Scalability

The strong scalability [74] of a system is defined as the ratio T1TN , with T1 being the time taken to complete a task with

one thread and TN being the time taken with N threads. Scalability has been an important metric to measure performance
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improvement as more cores become available, and consequently, is widely used to measure distributed graph processing

systems. However, only observing the scalability of a system against that of other graph processing systems fails to

identify the unclaimed improvements that could be realized with better optimizations.

This is the premise of the COST metric [55], which can be used to identify how close a graph processing system

performs to a reference implementation that is hand-optimized and single-threaded. COST is the number of threads a

system must use to perform better than this reference implementation; according to the authors, several distributed systems

had an unbounded COST (never outperforming the reference implementation). While COST does not represent the lowest

possible time needed for a task (it could be reduced further with the use of more modern algorithms, for instance), it does

provide an important yardstick to assess the “optimization level” of a system – the closer to 1, the closer the system is to a

performant baseline.

Despite being an easy, reliable, and revealing metric, only a handful of research papers have followed the advice of

the COST paper and demonstrated scaling results against a single-thread configuration. Gemini [11], Automine [75],

GRAM [76], G-POP [77] are few notable exceptions.

The COST paper highlights the importance of better baselines, but more importantly, also highlights how hard it is

to compare systems and the need to “always measure one level deeper” [78]. Our paper continues the COST work by

identifying and rectifying the most pervasive forms of incorrect benchmarking practices prevalent in the community.

5.2 Traversed Edges per Second can be Misleading

The performance of a system is dependent on several factors, and the measurement of execution time is not sufficient

to glean any insights into why the system performs the way it does. Another metric commonly used to measure the

performance of graph processing systems is TEPS: the number of edges the system can scan per second. This is a better

metric and provides some insight into the system that is independent of the dataset used for the benchmark. Beamer et

al. [69] note that TEPS can be misleading if the counting of an edge is not fixed (undirected edges are often represented

as two directed edges – should we count them once or twice?). More importantly, however, a better algorithm can reduce

the number of edges that need to be scanned, leading to a lower TEPS score but faster execution. Instead, they propose

the Graph Iron Law - GAIL, which allows performance engineers to "weigh the trade-offs between the three most

important graph algorithm performance factors: algorithm, implementation, and hardware platform." GAIL allows the

decomposition of the execution time into a product of the number of edges an algorithm needs to traverse, the number of

memory requests each traversed edge makes, and the time taken to service each such memory request:

time

kernel
=

edges

kernel
x

memory requests

edge
x

seconds

memory requests

While this metric has been designed for single-node shared memory systems, it can easily be extended for disk-based

systems by measuring the number of read blocks and for distributed systems by measuring the number of packets

exchanged.

GAIL remains underutilized in research, and we only managed to find four publications that directly reference it, yet

several papers use TEPS as a primary metric to evaluate algorithmic throughput.

5.3 Benchmark Suites: Standardization of Graph Benchmarking

Other than the measurement problems mentioned in §5.1 and §5.2, several other issues with common comparative

benchmarking approaches need careful consideration. Comparing one system to another is most meaningful only when

done so that the difference between the systems is the novel contribution of the newer system. However, this is impossible
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and can rarely be achieved in practice. More realistically, what can be controlled is the methodology of conducting

the evaluation: collecting the same metrics on algorithms that do the same amounts of work when run on the same

datasets. Using a standard input dataset can also uncover spurious optimizations that hold only for some datasets but do

not generalize to a diverse selection. Most importantly, as Beamer et al. note, “using a standard high-quality reference

implementation could help discourage using low-performance baselines” [79].

Thankfully, there has been a strong push towards standardization to address the broken benchmarking practices in the

community. Much research went into producing good benchmarks and identified datasets that can indicate the realistic

performance of the systems being profiled. Starting with Graph500 [15], there have been many efforts toward making the

benchmarking process more streamlined. Graph500 defined benchmark kernels (BFS and SSSP), provided a synthetic

graph generator, instructions on what metrics must be collected and reported, and a validation protocol for submitted

results. Graph500 provides only two kernels and their fixed-topology synthetic graph generator graphs, which exhibit

unusual statistical characteristics, as mentioned in Section 3.2 [27]. While Graph500 is well-liked and useful for HPC and

supercomputing benchmarking, these shortcomings make it less useful for benchmarking graph processing systems.

There have been several subsequent benchmarking suites; the survey by Bonifati et al. [80] describes early benchmark

suites and their novel contributions, programming abstractions, datasets, and workloads. The most recent and relevant

benchmarking suites that we focus on in the remainder of this section are GAP-BS [79], Graphalytics [81], and GraphMi-

neSuite [33] Each of these graph benchmarking suites provides performant reference code, but Graphalytics, LDBC-SNB,

and GraphMineSuite also provide a variety of datasets of different sizes and domains. We now look at them in more detail:

GAPBS [79] attacks the spurious comparison problem by specifying the benchmarks that other system designers

can use when implementing their own benchmarks to ensure that their system can be more widely compared to other

specification-adherent systems. They also provide a reference (shared-memory) implementation of six benchmark

kernels: Pagerank (PR), Breadth-First Search (BFS), Single-Source Shortest Path (SSSP), Connected Components (CC),

Betweenness Centrality (BC), and Triangle Counting (TC). These can be used to establish a performant baseline against

which to compare. Each reference implementation also comes with a verifier function that can be used to verify the

correctness of the solution by either testing for the properties of a correct solution (for PR, BFS, or CC) or running a

dead-simple serial implementation of the benchmark kernel (for SSSP, BC, or TC). The benchmark provides five input

graphs: one uniform random Erdős–Réyni synthetic graph, one Kronecker graph, and three real-world graphs (Twitter,

Web sk-2005, and USA-Road). GAP-BS is actively maintained and quite widely used. The primary critique of GAPBS is

that they do not provide more datasets, and the ones they do provide are rather small and not statistically diverse enough.

LDBC Graphalytics [82] is perhaps the most well-known graph processing benchmark suite, which was designed to

bring order to the world of benchmarking graph analysis systems. Graphalytics provides a specification and reference

implementation of six algorithms: PR, BFS, Weakly Connected Components (WCC), Community Detection using Label

Propagation (CDLP), SSSP, and Local Clustering Coefficient (LCC). System developers can implement their algorithms

as long as their correctness can be validated compared to a reference output.

Graphalytics has the same vision as GAPBS but differs from GAPBS in a few important ways. First, Graphalytics

provides a more detailed breakdown of the end-to-end time the graph processing task takes. It provides the breakdown of

the total runtime of the task by the time to load the graph, the time for setup and teardown operations, the time taken to

preprocess and run Extract-Transform-Load operations, and the time to run the task itself. Second, Graphalytics improves

upon GAPBS by providing a richer set of metrics for expressing the processing throughput. Graphalytics reports the

Traversed Edges per Second (TEPS) and reports Edges and Vertices per Second (EVPS) (the sum of the number of edges

and the number of vertices processed by the system per unit time). They also provide two cost metrics that measure
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the Total Cost of Ownership (calculated based on the TPC pricing model) and Price Per Performance (defined as the

ratio between TCO and EVPS). Third, Graphalytics provides a larger set of real-world and synthetic datasets of various

sizes and domains. They also provide several synthetic graphs generated by the Graph500 Kronecker generator and the

LDBC Datagen tool. Graphalytics identifies the ground truth by generating a reference output using a “specifically chosen

reference platform, the implementation of which is cross-validated with at least two other platforms up to target scale

L. The results are tested by cross-validating multiple platforms and implementations against each other”. Any output

generated can be verified against this reference output by using either an exact match (for BFS and CDLP), equivalence

matching (which applies to WCC), or an epsilon matching strategy (which applies to PR, LCC, and SSSP).

Graphalytics also provides a useful Java-based test harness and driver code that can be used to run benchmarks on a

system in a manner consistent with their specification. However, making use of this harness requires adapting their generic

platform driver with the platform-specific implementation. This is great for reliable and reproducible benchmarking

practices; however, this is an almost insurmountable challenge to an academic researcher who is pressed for time and has

little to no incentive to do this extra work.

GraphMineSuite [33] is a recent benchmark suite that was designed to develop highly performant baselines for graph

mining algorithms. GMS has been designed explicitly to handle graph problems that are not traditionally researched in

the parallel processing community (such as PR, BFS, etc.); instead, GMS chooses to focus on the equally important but

harder problems of graph pattern matching (maximal cliques, k-clique, frequent subgraph mining, subgraph isomorphism,

etc.), graph learning (vertex similarity, link prediction, clustering, and community detection), optimization problems

(graph coloring, minimum spanning tree, minimum cuts), and problems of vertex reordering (degree reordering, triangle

counting ranking, and degeneracy reordering). In all, GMS provides some forty high-performant benchmark reference

implementations and specifications.

GMS reports all the usual metrics that one expects from a benchmark suite: kernel running times and their breakdown

by task, strong scaling analyses, memory consumption, machine efficiency (CPU core utilization), and memory band-

width utilization (measured in terms of cache hits/misses, memory reads/writes, etc.). GMS defines a new metric for

measuring algorithmic throughput that “measures the number of mined graph patterns per unit time”. Depending on the

algorithm domain, this metric measures different things: graph subgraphs found per second for graph mining problems,

similar vertices derived per second for link prediction tasks, and the number of communities detected per second for

clustering/community detection tasks.

GMS, unlike other benchmarking suites, defines guidelines to select datasets that would be computationally challenging

for all specified algorithms in the suite. While GAPBS chose input graphs of varying degrees of sparsities, diameters,

degree distribution skew, and amount of locality, GMS emphasizes including datasets from different origins, since they

observed that two graphs of nearly identical statistical properties (size, densities, degree skew, and diameters) can behave

differently for the same mining task, since the dataset’s domain might make it likely to contain certain motifs.

These benchmark suites have helped advance and standardize benchmarking and bring some much-needed rigor to

the area of research. Our work shares the fundamental vision of better benchmarking practices proposed by all these

benchmarking frameworks. We focus on illustrating the significant consequences of subtle modifications to the dataset.

Vertex ordering is an important factor in graph analysis and should be explicitly controlled for, as in the study by Abbas

et al. [83]. To our knowledge, vertex re-orderings are not explicitly controlled for in any comparative study we have

encountered in our research corpus. To the best of our understanding, we are the first to demonstrate the impact of isolated

vertices in synthetic datasets on benchmark performance.
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5.4 Lack of Adoption in Academia

Benchmarking suites are great, yet they remain pitifully underutilized in academia. Why? Consider the composition of

the LDBC organization [84]: they have 24 member organizations out of which only 3 are non-commercial. LDBC also

runs a tournament-style competition of graph processing systems [85]. Of the recent submissions to the Graphalytics

competitions - nearly all are from the industry, which is understandable considering that an audited performance profile is

a great marketing tool. Academics usually do not have any similar incentive. Researchers need to benchmark their system

against any system they identify as a close competitor, and they likely need to do so quickly before an impending paper

submission deadline. Using graphalytics would be a herculean effort as we explain below:

The Graphalytics test driver is written in Java and one needs to implement the relevant classes to make use of it.

This effort must be repeated for each system under test. This is not likely to happen in academia, where we are only

now catching up to the practice of artifact evaluation, sharing citeable datasets and software versions, and automatically

reproducible results. Graphalytics presents an all-or-nothing proposition for academic research: either everybody uses it

and benchmarking is utopian, or nobody does, and we remain in the benchmarking rut we currently find ourselves in.

Ideally, academics should use Graphalytics for benchmarking (and the artifact evaluation committees ought to enforce

that), but if they choose not to, they should strive to be more proactive in reporting additional metrics and implementation

details.

A more attainable goal would be to have graph processing systems explicitly state which graph algorithm they use for

their benchmark kernel implementation and whether their implementation conforms to the specification laid out by a

benchmarking suite such as GAPBS, GBBS, or GMS. Artifact evaluation committees should mandate this in all major

data management conferences. Similarly, our benchmarking best practices are easy to enforce and do not require much

effort from academics.

6 CONCLUSION

Graph-structured data is increasingly important, and we see no indication that further work in producing efficient and

scalable graph processing systems will cease. However, ensuring that next-generation graph processing systems are truly

advancing the state of the art requires that we use sound methodology in assessing performance. We have shown that

current practice falls far short of this ideal. It might be tempting to interpret the lack of diversity in graph data sets and

benchmarks as a kind of standardization. However, the majority of these data sets are too small to demand the scale of

modern processing systems; they fit in the main memory of most laptop and desktop machines.

State-of-the-art evaluations suffer from poor evaluation practices, such as imprecisely describing datasets, failing to

both describe and measure preprocessing steps, omitting crucial experimental setup parameters, and ignoring zero-degree

vertices and vertex orderings. This last omission is particularly troubling. Different vertex orderings lead to drastically

different results for the same graph on the same graph processing system, yet most papers are silent on such orderings.

Zero-degree vertices can render BFS benchmark results meaningless. Every graph processing system seems to pick a

unique definition of a “triangle” when it comes to the Triangle Counting benchmark on directed graphs. Good science

requires that we do better.

In this SoK, we present a review of the benchmarking practices used in academic research on graph processing systems

and highlight the pressing issues that need to be addressed for codification and standardization. We demonstrate the impact

of underspecifying the datasets, their properties, and the preprocessing steps performed during the evaluation and provide

recommendations for reporting and addressing these issues. The SoK details previous attempts at benchmarking suites
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that partly address these problems and provide actionable insights for researchers to incorporate into their benchmarking

practices. We believe this systematization and our recommendations will guide future research efforts and ultimately

improve the reproducibility and robustness of published results.
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[79] Scott Beamer, Krste Asanović, and David Patterson. The gap benchmark suite. arXiv preprint arXiv:1508.03619, 2015.
[80] Angela Bonifati, George Fletcher, Jan Hidders, and Alexandru Iosup. A survey of benchmarks for graph-processing systems. Graph Data Management:

Fundamental Issues and Recent Developments, pages 163–186, 2018.
[81] Ldbc graphalytics. https://graphalytics.org/.
[82] Alexandru Iosup, Ahmed Musaafir, Alexandru Uta, Arnau Prat Pérez, Gábor Szárnyas, Hassan Chafi, Ilie Gabriel Tănase, Lifeng Nai, Michael
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