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Abstract

Distributed systems are widespread in usage.
Yet, they continue to be marred by bugs. Dis-
tributed tracing is a widely adopted approach
that gives engineers visibility into cloud sys-
tems. Existing tracing tools support analysis
of a single request and are most useful for de-
bugging correctness issues.

However, diagnosing an issue in the process-
ing of a request, requires comparing the execu-
tion of a buggy request to a non-buggy request
or even an aggregate set of requests. Some is-
sues even require comparing the behavior of
two different sets of requests to identify a po-
tential issue. Existing trace analysis tools ei-
ther do not support these use cases or produce
an output that is not understandable.

To rectify this, in this paper we propose a new
approach for performing trace comparison and
aggregation. The key insight of our approach
is to derive a text representation for each trace
and then perform aggregation and comparison
on texts. The benefit of this approach is two-
fold: we can leverage text summarization and
comparison algorithms; the output produced
is text which is understandable for users. We
present algorithms for generating a text repre-
sentation from a trace, summarization of these
text representations to generate a summary of
traces, and comparison of traces.

1 Introduction

Distributed systems are prevalent in society to the
extent that billions of people either directly or in-
directly depend on the correct functioning of a
distributed system. From banking applications to
social networks, from large-scale data analytics
to online video streaming, from web searches to
cryptocurrencies, most of the successful computing
applications of today are powered by distributed
systems. The meteoric rise of cloud computing in

the past decade has only increased our dependence
on these distributed systems in our lives.

Tasks like monitoring, root cause analysis, per-
formance comprehension require techniques that
cut across component, system, and machine bound-
aries to collect, correlate, and integrate data. In
the past decade, distributed tracing has emerged
as an effective way to gain visibility across dis-
tributed systems (Mace et al.; Mace and Fon-
seca; Fonseca et al.). Today distributed tracing
frameworks are deployed at all major internet
companies (Kaldor et al.; Sigelman et al., 2010;
Blog, 2018); notable open-source examples include
OpenTelemetry (Flanders, 2019), Jaeger (Jaeger),
and Zipkin (Twitter); and observability-focused
companies offer platforms centered on analysis of
traces (LightStep).

Distributed tracing tools arose out of a need
to understand the behavior of individual requests:
identifying the specific services invoked by a re-
quest, diagnosing problematic requests, and debug-
ging correctness issues (Fonseca et al.; Sigelman
et al., 2010; Mace). As a result, each trace only
tells the story of a single request. A trace repre-
sents the path of one request through the system
and contains information such as the timing of re-
quests, the events executed, and the nodes where
these events were executed. Moreover, traces can
be used to identify slow requests and understand
the difference between request executions.

However, as distributed tracing is designed for
production distributed systems, a large volume of
data is produced on a daily basis. It is humanly im-
possible to manually analyze each trace and draw
inference about the system as a collective. Cur-
rent analysis tools primarily focus on visualizing
a single trace and provide little help to the user
for analyzing a large amount of data. Moreover,
current analysis tools struggle with highlighting
the difference between any given two traces due



to the complex temporal and structural properties
of traces. Both of these limitations results in the
lack of techniques for comparing a trace with an
aggregate set of traces to explain to a user how a
potentially erroneous trace might differ from a set
of pre-identified “good” traces.

In this paper, we present techniques for com-
paring two traces, aggregating a set of traces, and
comparing a trace with a set of traces. The key idea
behind our techniques is to first convert each trace
into an equivalent text representation and then con-
struct techniques for performing aggregation and
comparsion. The benefits of such an approach are
two-fold: (i) There has been a plethora of research
in the fields of text comparison and text summariza-
tion and we can leverage these existing techniques;
(ii) Language is a proven way of communicating
complex information in an understandable format
for human beings.

To this extent, we describe a novel framework
that generates a text representation for each trace
detailing the execution behavior of the system
for the particular request. We then model the
trace comparison tasks as text similarity tasks and
present a metric for calculating the difference be-
tween the two traces based on the edit distance
between their corresponding text representations.
Lastly, we present trace aggregation as a multi-
document summarization task where each trace
corresponds to a single document. Section 2 de-
scribes the trace data. Section 3 describes the user-
tasks and how we model them as NLP tasks in de-
tail. Section 4 explains the design, implementation,
and technical details of our techniques. Section 5
presents an evaluation of our techniques and Sec-
tion 6 discusses the limitations of our techniques
and how we plan to address them in future work.

2 Data

2.1 Trace Structure

A trace is a Directed Acyclic Graph (DAG) of spans.
A span can be thought of as a particular task that
a system performs to execute a request. The gran-
ularity of the task is user-defined and controlled.
A span can represent anything from a single func-
tion execution, a single thread execution, or a sin-
gle operating system process comprised of mul-
tiple threads. Spans are connected to each other
by parent-child relationships. Each span records
its timing and duration, as well as arbitrary key-
value annotations provided by a developer: such

as logging a span’s arguments. Within a span, de-
velopers can also add events, which are typically
unstructured, human-annotated slog messages.
Span annotations and events are developer-defined
and vary from system to system. Each individual
trace can be very large, comprising thousands of
spans and events (Kaldor et al.; Las-Casas et al.,
2019; Flanders and Shkuro, 2019), and production
systems capture traces for millions of requests per
day (Kaldor et al.).

Most distributed tracing frameworks represent
traces using spans (Jaeger; Flanders, 2019; Sigel-
man et al., 2010), but some frameworks are based
only on events (Fonseca et al.). For event-based
frameworks, it is straightforward to group events
together into spans (e.g. events occurring in the
same thread). In this paper we use the term task to
refer to both of these concepts. In span-based trac-
ing frameworks a task corresponds to a span and in
event-based tracing frameworks a task corresponds
to a collection of events.

2.2 Dataset
For the development and evaluation of our tech-
niques, we use the open source deathstarbench
trace dataset (Anand and Mace, 2019). The dataset
contains 22285 individual traces obtained from the
DeathStarBench open-source benchmark for cloud
microservices (Gan et al.). The captured traces
are from 7 different API types (Register user, Fol-
low user, Unfollow user, Composepost, Write time-
line, Read timeline, Read user timeline). Inter-
nally,the benchmark comprises 36 microservices;
each high-level API call invokes an overlapping
subset of the services. In addition to datasets of
regular workloads, the dataset also contains two
types of anomalous traces: one with manually trig-
gered exceptions in the internal microservices; and
one arising accidentally from a configuration error
in the deployment causing docker containers to in-
termittently restart and services to be temporarily
unavailable.Figure 1 shows the CDF of the number
of events and the number of tasks for the dataset.

3 User Tasks

In this section, we explain the user tasks that we
want to accomplish and how we model these user
tasks as traditional NLP tasks. The list of tasks are
as follows:

1. Creating a text representation for any given
trace. We model this task as a Text Generation
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Figure 1: (a) CDF of the number of events per trace; (b) CDF of the number of tasks per trace; in the DeathStar-
Bench trace dataset

task that generates text from a data source,
in this case, tracing data. Thus, this is a
Data2Text task.

2. Generating an aggregate representation of
traces. We model this task as a Multi-
Document Summarization task where each
document is the text representation generated
for a task from a single trace.

3. Comparing and explaining the differences be-
tween two traces. We model this task as a
Text Similarity task where instead of compar-
ing the raw structure of the two traces, we
instead compare their corresponding text rep-
resentations. The difference between the two
traces can then be modeled as a function of
the edit distance between their corresponding
text representations.

4. Comparing one trace to an aggregate set of
traces. We also model this task as a Text
Similarity task where we compare the text
representation of a trace with the generated
summary of the aggregate set of traces using
our technique described in Task 2. Similar to
Task 3, the difference between the trace and
the aggregated summary can be modeled as
a function of the edit distance between their
corresponding text representations.

4 Contribution

4.1 Trace2Text
The task of text generation from data can be divided
into three modular interdependent tasks - (i) content
planning defines which parts of the input fields or
meaning representations should be selected; (ii)
sentence planning determines which selected fields
are to be dealt with in each output sentence; and

(iii) surface realization generates those sentences.
To obtain processed trace data, we use a backend
server for trace processing that we had built as
part of the visualization course last semester1. The
input data for each trace includes, some overview
information of the trace, the list of events, and
the list of tasks for that trace. For each event, the
human annotated-text as well as the probability of
that event occurring are included. For each task, a
list of concurrent tasks that were happening during
the task’s execution are also included. The goal is
to generate a text representation of the trace that
includes information describing the execution of
the trace and overview information that would be
useful for the user.

1© The trace was created on 31 May, 2019 and it
↪→ took around 422 seconds to complete.

2© The trace was associated with the following
↪→ tags: ComposePost NginxWebServer5.

3© The trace had 388 events, out of which 28
↪→ events had less than 25.0 chance of
↪→ occurring.

4© The execution of the request was performed
↪→ by 22 tasks. 3 tasks had latency that
↪→ ranked higher than the 95th percentile of
↪→ the latency distribution for the respective
↪→ task.

5© Task performing the operation
↪→ UrlShortenHandler::
↪→ UploadUrlsMongoInsert had the
↪→ maximum amount of contention with 7
↪→ other tasks performing the same
↪→ operation at the same time for different
↪→ requests.

1The source code of the backend server is located
at https://github.com/vaastav/TraViz/tree/
master/traviz_backend

https://github.com/vaastav/TraViz/tree/master/traviz_backend
https://github.com/vaastav/TraViz/tree/master/traviz_backend


Figure 2: Annotated overview paragraph generated for
a trace

Content Planning The content planner parses
the input data to extract the information needed to
generate the overview text and the execution text.
From the list of events, the number of anomalous
events are extracted. An anomalous event is an
event that has probability lower than a pre-defined
threshold. The content planner also constructs a
DAG of the events based on the causal relationships
of the events. For each task in the list of tasks,
an array of temporally ordered events are created
that occurred on that task. The task with the most
number of concurrent tasks is also extracted.
Sentence Planning The sentence planner sepa-
rates the content by planning to generate one para-
graph for each task in the trace as well as one para-
graph for overview information about the trace.
The information contained inside the paragraph
would be the name of the task that created this
task and labels from the events associated with the
task. The overview paragraph provides information
about the trace such as latency, tags, and other meta-
data. It also includes information about anomalous
events and tasks.
Surface Realization The surface realization is
currently static as it is done based on a pre-defined
template. Figure 2 shows an annotated example
of the overview paragraph generated for a trace.

1© provides information about when the trace was
created and what was the latency of the task. 2©
mentions the tags associated with the trace. 3©
contains the total number of events in the trace and
the number of anomalous events. 4© has the number
of tasks in the trace and the number of tasks which
have latencies that lie in the 95th percentile of the
latency distributions of their respective tasks. 5©
provides the name of the task that had the most
number of concurrent tasks executing at the same
time. Figure 3 shows an annotated example of
the paragraph generated for a task in a trace. 1©
describes which task, if any, created this particular
task. 2© is the name of the task. Each sentence
following 2© is the human-annotated label of the
corresponding event that occurred on that task. The
sentences are ordered w.r.t to the ordering of the
events for that task.

1© Task NginxWebServer created task
↪→ MediaHandler::UploadMedia.

2© MediaHandler::UploadMedia.

Uploading media to compose post service.
↪→ Popping client from client pool.
↪→ Obtaining lock on client pool mutex.
↪→ Obtained lock on client pool mutex. No
↪→ client available in client pool. Creating a
↪→ new client. Releasing lock on client pool
↪→ mutex. Connecting to client. Pushing a
↪→ client into client pool. Acquiring lock on
↪→ mutex. Acquired lock on mutex. Pushing
↪→ client back into client pool. Releasing
↪→ lock on mutex. MediaHandler::
↪→ UploadMedia complete.

Figure 3: Annotated paragraph generated for a task in
a trace

4.2 Trace Summarization
We do trace summarization at the granularity of a
task. Thus, instead of summarizing the text repre-
sentations of all the traces we want to summarize,
we instead summarize the text representations for
each task across all traces. If a set of traces has
30 different tasks, we perform 30 different multi-
document summarizations to obtain a summary for
each task. These task-specific summaries are then
concatenated together to form the summary of the
traces. The reason behind doing summarization at
the granularity of a task is to ensure that there is
no cross-contamination of information between the
tasks as we don’t want the summarized result to
have an incorrect text representation. Additionally,
the format of that summary will now match the
overview generated for a single trace. This allows
us to then be able to make clean comparisons be-
tween a single trace and a group of traces using
their summary. Since each task has a relatively set
behavior, we can infer that the overview paragraphs
describing it will never changes drastically during
normal execution. Even though it may be repeated
hundreds of times, there will not be an explosion
in the number of unique sentences found across
traces. This means that the summarization of a task
does not have to be a complex operation. We break
down our summarization in three steps - Prepro-
cessing, Graph Construction, and Text Conversion
- that we describe below.
Preprocessing In the preprocessing step, text
representation for each trace is broken into text
representations of each task. Based on our text
generation algorithm, text representation for a task
in a trace is a paragraph. Text representations from
multiple traces are then grouped together by task.



For each task, there are multiple paragraphs that
need to be summarized. Each such paragraph is
represented as its own document such that there are
multiple documents available for each task.
Graph Construction For each task, we con-
struct an aggregate weighted graph from the docu-
ments associated with that task. Each node in the
graph represents one unique sentence across the
documents. Uniqueness is defined not only by the
content of the sentence but also by the prefix of
sentences that were before the sentence. This is
done to ensure that when the documents are being
aggregated, two sentences are only merged together
if they have the same preceding sentences. Each
edge represents the causal and temporal ordering
between sentences. This is constructed by adding
an edge between each pair of adjacent sentences.
The weight of the edge represents the number of
documents in which that edge was seen.
Text Conversion To convert the graph into text
we first create a topological sort ordering of the
vertices in the graph. This is to flatten the graph
structure as the aggregation would have induced
branches in the graph because of deviations. We
choose a topological sort ordering as it guarantees
to preserve the order between sentences from all the
documents. Once we have the ordering, we simply
concatenate the labels from the nodes according
to the ordering to generate the summary for that
particular task. Currently, we don’t use the weights
of the edges in the text generation.

4.3 Trace Diff

To compare two traces, or one trace and one aggre-
gate set of traces, or two different aggregate sets
of traces, we choose to compare their correspond-
ing texts. For calculating the difference between
the two text representations, we use Google’s diff-
match-patch library2. For explaining our algorithm,
we choose to explain the comparison of two traces
but the same algorithm applies for the other two
comparison scenarios. However, instead of just
computing the diff between the two texts, we strive
for a much finer granularity, and instead compute
the diff between the texts by computing the diffs
between the common tasks amongst the two traces.
Tasks that are only present in either trace are auto-
matically treated as insertions or deletions in the
diff. Figure 4 shows the output of the diff function

2Library available at https://github.com/
google/diff-match-patch

applied to one common task in two traces. The
uncolored, normal text represents sentences (i.e.
events) that are present in both traces. The struck-
out, red text represents the text that is only present
in trace 1 but not in trace 2. The italic, green text
represents the text that is only present in trace 2 but
not in trace 1.

Task NginxWebServer created task
↪→ MediaHandler::UploadMedia.
↪→ MediaHandler::UploadMedia.
↪→ Uploading media to compose post
↪→ service. Popping client from client
↪→ pool. Obtaining lock on client pool
↪→ mutex. Obtained lock on client pool
↪→ mutex. No client available in client
pool. Creating a new clientPopping
client from front of the
pool. Releasing lock on client pool
↪→ mutex. Connecting to client. Pushing
↪→ a client into client pool. Acquiring
↪→ lock on mutex. Acquired lock on
↪→ mutex. Pushing client back into
↪→ client pool. Releasing lock on mutex.
↪→ MediaHandler::UploadMedia
↪→ complete

Figure 4: Text Difference for a task from 2 traces

Trace Distance Based on our diff function
above, we also provide a new metric for calculating
the distance between any two traces. Let T1 be the
set of tasks in Trace 1 and T2 be the set of tasks
in Trace 2. Then, the distance between the two
traces is the sum of the distances for each task in
T1 and T2. Equation 1 shows the formal definition
of the function for calculating the distance between
the text representations of two traces. The disttask
function for a task defines the distance calculated
for this task between Trace 1 and Trace 2. If the
task is present in both the traces, then the cost is
simply the Levenshtein distance between the para-
graphs for this task in the two traces. However, if
the task is only present in one of the traces, then
the distance is the number of sentences in the para-
graph for that task multiplied by some pre-defined
task missing penalty, P . Currently, P is set to 10
but can be changed depending on the needs of the
users. Equation 2 shows the formal definition for
calculating the distance between the text represen-
tations of a task in two traces.

https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch


distance =
∑

t∈T1∪T2

disttask(t) (1)

disttask(t) =

{
Levenshtein(t1, t2),if t ∈ T1 ∩ T2, t1 ∈ T1, t2 ∈ T2

P ∗ numsentences(t),if t ∈ (T1 \ T2) ∪ (T2 \ T1).
(2)

5 Evaluation

5.1 Experimental Setup

We perform a quantitative evaluation to evaluate
the scalability of our techniques as well as the qual-
ity of the text, comparisons, and the summaries
generated. For the Text Generation and Trace Com-
parison evaluation, all results were collected on an
Intel i7-core 3.1GHz processor machine with 32GB
of RAM. For the Trace Summarization evaluation,
all results were collected on an Intel(R) Xeon (R)
CPU E5-2690 v3 @ 2.60GHz with 56GB RAM
and an NVIDIA GK210GL [Tesla K80] GPU.

In addition to the quantitative evaluation, we also
performed a qualitative evaluation by conducting
an informal user study with 1 user who is one of
the leading experts in distributed tracing. Due to
time restrictions, the user was only able to pro-
vide feedback about the text generation and trace
comparison techniques.

5.2 Text Generation

Figure 5: CDF of generating text for all the traces in
the DeathStarBench dataset

Quantiative Analysis To measure the efficiency
of our text generation approach, we measure the
time taken to generate the text for every trace in
the DeathStarBench dataset. Figure 5 shows the
CDF of the breakdown of the total time taken to
generate the text. The time taken to generate the
text is dominated by the time taken to load the data
from the backend server. However, once the data is
available, the time taken to generate the text is less
than 10 milliseconds for all traces.

Figure 6: Time taken for preprocessing traces for sum-
marization

Qualitative Analysis To evaluate the quality of
the text generated, the user mentioned the follow-
ing:“The first sentence is the interesting one here;
the rest of the sentences are a bit difficult to parse.
The interesting parts of the first sentence are the
comparisons to general statistics about the trace
dataset. I like the last sentence, because it’s start-
ing to push towards deriving a root cause for the
latency (ie, contention with other tasks), and I think
when it’s presented as text that’s a very digestable
representation (vs. some sort of visual interface).”
This suggests that the expert user believes that the
overview paragraph is very useful for explaining
root causes of potential problems and does so better
than a potential visual interface might. Although,
we can still improve our overview by performing
comparison for more statistics that a user might
care about. Additionally, the expert user also sug-
gested “to prune away any boring information and
try to get at any root causes (or simply say that the
request was normal)”. This suggests that text that
the execution information being shown to the user
is too verbose and we might need to infer some
high-level information about the trace instead.

5.3 Trace Summarization

We explored three metrics to evaluate the summa-
rization of traces. First to determine how reason-
able our summarization method is we performed
a scalability microbenchmark using a single task
from multiple traces. Then we measure the quality



# of Docs OS Potara
5 0.103 77.429
10 0.105 160.240
25 0.107 404.716
100 0.109 1711.283
500 0.140 18118.918

Table 1: Time (in s) taken by Potara and Our Summa-
rizer (OS) to summarize varying number of documents
for a task

of the summary based on the number of unique sen-
tences it was able to capture from the original docu-
ments. Finally, we perform a macro-scalability test
by summarizing all tasks from multiple traces. For
each metric we run our own algorithm as well as
the potara3 summarization tool as a baseline. We
chose this tool as this was the only open-source
multi-document summarizer that we could find that
would run out of the box on our data. We also tried
using BERT but could not properly configure it to
generate meaningful summaries. In addition we
also measured how long does it take to perform
the preprocessing step. Figure 6 shows that the
preprocessing time grows linearly with the number
of traces.
Micro-scalability We tested the scalability of
the summarizers at a document-level. We split
up the summarization to be at a task level. This
means that each task in a given summarization job
will have its own set of documents. To perform a
micro-scalability evaluation we looked at only a
single task’s documents. For this benchmark, we
chose a task that appeared in a large number of
traces so that we can get a better estimate about
the scalability of summarizing a large number of
documents for a task. We ran the summarization
algorithm on an increasing number of documents
for a particular task. Table 1 shows that potara
is unusable after about 100 traces, and that our
summarizer increases sublinearly with the number
of documents for a particular task.
Macro-scalability While it is important to know
how a summarizer works at a document level, we
are summarizing entire sets of traces. Therefore
we ran scalability experiments where an increasing
number of traces were summarized. Since traces
can have multiple tasks, this means that each sum-
marization job in this experiment is actually run-

3Tool available at https://github.com/sildar/
potara

Num Traces OS Potara
5 0.109 31.401
10 0.116 43.979
25 0.120 625.489
100 0.156 6096.836
1000 0.483 72176.924
10000 3.851 DNF
22290 8.224 DNF

Table 2: Time taken (in s) by Our Summarizer (OS)
and Potara to summarize a varying number of traces

ning multiple times, once for each task, before it is
considered complete. We ran these experiments on
sets with varying number of traces. Table 2 shows
the results for the benchmark. Similar to the micro-
scalability benchmarks, it is important to note the
lack of scalability in potara.
Summary Quality We determined our sum-
maries should be able to capture a general idea
of the “regular” execution state of the task being
summarized. A task may have hundreds of sen-
tences in its documents, but only 20 that are unique.
As a metric for summary quality we checked how
many of the unique sentences in a task’s corpus
were present in a summary. Table 3 shows that
Potara is not able to capture the general idea of a
regular execution because at max it is using less
than 50% of the unique sentences in a tasks corpus
of sentences.

5.4 Trace Comparison

Quantiative Analysis We first measured the
amount of time taken to generate the diff between
the text representations of two traces. From the
DeathStarBench, we randomly chose 100 different
pairs of traces and measured the time taken to gen-
erate the diff between the trace. On average, it took
4.87 milliseconds to generate the diff and measure
the distance between two pairs of traces.
Accuracy of Distance function We wanted to
ensure that the distance function we had come up
behaves in the expected way when computing the
distance between pairs of traces. Table 4 shows
our detailed results. First, the distance function
returns 0 when computing the distance between two
identical traces. Furthermore, the distance function
grows monotonically with increase in deviation
between traces.
Qualitative Analysis of Diff Regarding the
quality of the comparison generated, the user men-

https://github.com/sildar/potara
https://github.com/sildar/potara


Number of documents Num Matched Sentences - Potara Num Matched Sentences - OS Total Sentences
5 4 16 16
10 5 19 19
25 7 19 19
100 7 20 20
500 8 20 20

Table 3: Quality comparison of the summary generated by Potara and Our Summarizer (OS) for varying number
of documents for a given task

Trace Pair Distance
Identical Traces 0.0

Non-Error traces of
same type (API)

258.0

1 Error, 1 Non-Error
trace of same type (API)

1610.0

Traces of different type (API) 1815.0

Table 4: Measured Distance based on our distance func-
tion for randomly chosen pairs of traces.

tioned the following:“This is really cool, I’m ac-
tually surprised how amenable the complex trace
data is to being represented as text. I’ve always
wondered how to visually compare two traces;I re-
ally like how you’ve leveraged some of the more
established visual indicators of text comparison
(the green+ / red- idiom). With trace diff, I un-
derstand now why having a more verbose trace
representation in text is useful. It’s not interesting
by itself, but the diffs provide context for honing in
on specific parts of the text.” This suggests that the
trace diff that we generated using text diff is suc-
cessful. However, we do believe that it has certain
limitations that we discuss in Section 6.

6 Discussion & Future Work

6.1 Lessons Learned

Initially for the text generation task, we wanted to
apply textual entailment techniques when gener-
ating the text but we realized that this will result
in loss of detailed information that is useful for
performing comparisons.

For the text summarization task, our plan was to
use an out-of-the-box summarizer like BERT or an-
other state-of-the-art multi-document summarizer.
But we realized quickly that an out-of-the-box sum-
marizer would not work well with our data as the
order of the sentences would not be preserved as
well as the fact that the summarizer won’t scale to

a large number of traces.

6.2 Limitations

Our current text representation has 2 issues. The
first issue is that even though the text representation
captures the temporal and causal ordering, the text
representation fails to capture how much time was
spent between two pairs of events. This informa-
tion is useful for diagnosing performance issues
especially latency bugs. The second issue is that
the text representation of a task merely presents
the information about what happened and does not
provide any sort of high level inference about the
events that happened. The quality of the text rep-
resentation is useful for comparison tasks but not
useful for humans as a standalone piece of infor-
mation.

The summary text generated for each task flat-
tens the graph structure by performing a topolog-
ical sort. This results in there being no indication
of branching in the generated text. This is fine
for performing comparisons but according to our
user study, this information is hard to digest as
standalone information.

6.3 Future Work

As part of our future work, we would enhance the
text representation of a trace to address the limita-
tions. First, we would introduce a special character
that represents a pre-defined time unit. Then, each
pair of sentences would be separated by the number
of time unit characters that represents the amount
of time elapsed between the events corresponding
to the sentences.

Moreover, it is sufficiently clear, that the text
representation of a trace generated for comparison
is only useful for comparison but not necessarily for
understanding the execution of a trace. Thus, we
would need to develop some inference algorithm
that can generate high-level inference over the text
representation of the trace to provide the user with



high-level information about the trace.
We also want to enhance our summarization al-

gorithm to somehow include the weights of the
edges in the summary graph in the generated sum-
mary for each task. This would also lead to us
creating a weighted distance function whilst per-
forming comparisons using the aggregated sum-
mary of traces.

7 Related Work

Building trace aggregation and trace comparison
tools have garnered a lot of effort from both indus-
try and academia in the past decade. All of these
efforts have been focused at developing visualiza-
tion techniques. Pintrace (Karumuri, 2017), the dis-
tributed tracing system at Pinterest, uses aggregate
analysis to compare two different groups of traces
to narrow down the root cause of an error. However,
the granularity of the comparison is coarse as the
comparison is only performed on the distribution
of latencies of the traces in each group. This is only
useful for identifying high-level trends. Early work
on trace comparison similarly compared latency
distributions, but required traces to be structurally
isomorphic (Sambasivan et al., 2013); this is rare in
practice as most traces are structurally unique (Las-
Casas et al., 2019). XTrace (Fonseca et al.) has a
trace comparison tool that uses a graph difference
algorithm to visualize the diff between the event
graphs of two traces. Although, the visualization
can highlight unique events in each trace, it fails
to explain to the user what these events are. Re-
cent work at Uber (Flanders and Shkuro, 2019)
compares the structure of incoming traces with a
“good” set of traces to find “bad” traces and then
visualizes their difference as a directed graph. This
involves extracting features from the “good” traces
and then comparing that against a potentially “bad”
trace. It is not particularly clear how effective such
a visualization is in practice. The techniques we
have discussed use textual representation instead
of visual representation of traces which we believe
is superior for explaining the differences between
traces as well as similarities between traces.

Traditional text generation systems generate text
from data using hand-crafted specifications and
rules for generating text from data (Dale et al.,
2003; Reiter et al., 2005; Portet et al., 2009; Turner
et al., 2009). However, there have also been a rise
in data-driven and neural approaches that aim to
learn the working of the text generation modules -

content planning, sentence planning, and surface
realization - either individually or in a combined
fashion (Barzilay and Lapata, 2005, 2006; Konstas
and Lapata, 2013; Lebret et al., 2016). Our text
generation approach is similar to the traditional
approach where we write explicit templates and
rules for generating text from a trace. We leave the
use of neural and data-driven approaches for text
generation from traces as future work.

Text similarity is a widely-studied task with
many different techniques and measures (Gomaa
et al., 2013). Similarity measures are broadly clas-
sified into two categories - string-based similar-
ity and corpus-based similarity. In this work, we
choose Levenshtein distance as our similarity mea-
sure for trace text comparison as Levenshtein dis-
tance accounts for insertions, deletions, and substi-
tutions which corresponds one-to-one with miss-
ing events, new events, and reordered events. It
additionally has the benefit of accounting for the
ordering of the letters/words in the strings which is
important for our trace text as the ordering of sen-
tences in the strings for a task inside a trace’s text
encodes temporal relationship between the events.

Multi-Document Summarization techniques are
either extractive or abstractive. Extractive tech-
niques (Xiao and Carenini, 2019; Liu and Lapata,
2019; Erkan and Radev, 2004) extract key sen-
tences and phrases from documents based on some
sort of similarity score between pairs of phrases or
sentences and uses a ranking algorithm as to select
the phrases to be included in the summary. How-
ever, extractive techniques do not respect the order-
ing of the sentences which are temporally relevant
for the trace text we are summarizing. Abstractive
techniques (Devlin et al., 2018; Bing et al., 2015)
formulate facts from the documents and then at-
tempts to rewrite the summary from scratch. These
approaches do not fit our end-goal of using the ag-
gregate trace text summary for comparison with
other traces. However, we do note that these tech-
niques can be useful for generating a summary that
provides a better explanation of the traces to users.

8 Conclusion

In this paper we presented novel techniques for
generating an aggregate representation of a set of
traces, comparing two traces, and comparing a
trace with an aggregate set of traces. Our tech-
niques are based on the insight that the users find
text to be easier to understand than any other means



of delivering complex information. To this extent,
we present a text generation pipeline that generates
a text representation for a given trace. These repre-
sentations are then used to generate a summary of
traces using state-of-the-art Multi-Document sum-
marization techniques. Comparison between two
traces, and a trace and an aggregate of traces are
modeled as text comparison tasks where their differ-
ence is measured as a function of the edit distance
between their corresponding text representations.
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