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ABSTRACT
Graphs and graph-processing have become increasingly im-

portant. This has led to an explosion in the development of

graph-processing systems, each of which is evaluated rela-

tive to its predecessors. In the absence of a large corpus of

real-world graphs, synthetic generators provide an easy way

to construct graphs of varying sizes. The most widely used

generator is the Kronecker generator. Unfortunately, the Kro-

necker generator was not designed to produce graphs for

benchmarking and when used in this fashion, it is problem-

atic in two ways. First, the fraction of zero-degree vertices

scales with the graph size, dramatically reducing the effective

size of the connected graph. Second, the generator produces

a vertex degree distribution not found in real world settings.

We demonstrate these phenomena and present the Smooth

Kronecker Generator, which remedies the vertex degree dis-

tribution problem without changing the statistical properties
of the graph.

CCS CONCEPTS
• General and reference → Evaluation; Perform-ance;
•Mathematics of computing→Graph algorithms; Ran-
dom graphs; • Theory of computation → Graph algo-
rithms analysis.
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1 INTRODUCTION
Graph processing has become sufficiently critical that we

now have a large number of graph processing systems, many

of which claim to provide a performance improvement rela-

tive to other systems ( [8, 11, 17, 25, 26]).

There is a dearth of real world large scale graphs, so when

evaluating systems scalability characteristics, researchers

turn to synthetically generated graphs, most frequently, those

produced by the Graph500 [20] and LUBM [7] generators.

The Graph500 generator is an implementation of the Kro-

necker [13] network model, which is a refinement of R-

MAT graphs. The Graph500 generator produces an unlabeled

topology meant to statistically resemble a real-world net-

work. There are other open source R-MAT generators [9, 16]

that have also been used in practice for generating large

graphs, and some researchers implement their own R-MAT

generators [25]. The LUBM generator produces a labeled

topology such that its semantic constraints, e.g., students per
class, resemble a real-world RDF dataset. LUBM is tightly

bound to a particular benchmark query set, because the

queries have to make sense with respect to the semantic con-

straints, while the Graph500 generator is used with general-

purpose benchmarks that do not impose such constraints,

such as PageRank, connected component, and breadth first

search.

A study of five years of graph systems papers showed

that R-MAT and Kronecker generators are the third most
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widely used data source for graph system performance eval-

uations [19]. Unfortunately, the more general purpose of

these graphs, the Kronecker graphs, present two challenges

that must be addressed to produce meaningful results: 1) an

unrealistic number of zero-degree vertices and 2) a combed

degree distribution. We discuss these challenges in more

detail in Section 3.

Section 2 provides an overview of R-MAT and Kronecker

graph generation. Section 3 illustrates the challenges aris-

ing when benchmarking with these graphs and why these

graphs are not entirely representative of real graphs. Sec-

tion 4 introduces Smooth Kronecker, which addresses the

most vexing issue of the generators. Our goals are twofolds:

First, we want the community to adopt the Smooth Kro-

necker model to avoid the combed degree distribution, and

Second, we want the community to be cognizant of, and

address in scalability studies, the fact that the number of

zero-degree vertices grows faster than the total number of

vertices when scaling Kronecker graphs.

2 THE KRONECKER GRAPHS
Generative graph models, such as the Erdös Rényi random

graphmodel [6] and Barabasi’s preferential attachmentmodel [2],

occupy prestigious roles in the history of graph theory. These

models are theoretically important but are not typically used

for representative benchmarks. Chakrabarti et al.’s “R-MAT:

A Recursive Model for Graph Mining [3]” represents knowl-

edge mined from real graphs by fitting them to a statistical

model’s parameters. The Kronecker graphs, our object of

study, are a refinement of R-MAT graphs, so we begin with

R-MAT graph generation.

An R-MAT or a Kronecker Graph is usually specified by 3

parameters: i) a scale factor S , where 2S is the desired number

of nodes in the graph, ii) an edge factor e , where e × 2S is

the desired number of edges in the graph, and iii) a seed

matrix [a b; c d], where the sum of the elements of the matrix

is 1. Consider a graph G with N (a power of 2) nodes, and

the N ∗ N adjacency matrix, A, where A(i, j) = 1 indicates

the existence of an edge between nodes i and j. Let’s divide
A into its four quadrants and introduce a 2 × 2 seed that is

a probability distribution over the four quadrants. R-MAT

generates edges in the graph by recursively sampling from

the seed distribution, according to the following procedure:

seed = 2 x 2 seed
A = an N x N adjacency matrix

for each desired edge in G
Q = A
do

# select a quadrant of A, according
# to the seed distribution

Q = sample(Q, seed)
while |Q| > 1

# Q is now a single cell in A
place edge at Q

R-MAT is widely used because it is simple: the distri-

bution is intuitively meaningful, and it’s easy to publish

parameters. Furthermore, when the distribution is derived

from real graph data (as its authors intended and demon-

strated), researchers can claim that the synthetic graphs

distribution are “like” a real graph and therefore valid exper-

imental data. In particular, this provides a credible method

to vary the size of graphs in an experiment and maintain

their inter-comparability. DARPA’s HPCS supercomputing

group chose R-MAT as the input generator for its SSCA#2

scalable graph analysis benchmark specification in 2005[1],

which evolved into the “HPC Scalable Graph Analysis Bench-

mark” in 2010[5], and then the Graph500 supercomputing

benchmark[20].

The Kronecker model of Leskovec, Chakrabarti, and Klein-

berg [12] characterized R-MAT’s recursive step as the Kro-

necker product of the distribution matrix with itself and

the recursive series as a Kronecker exponentiation process.

The distribution of graphs generated by this process are the

Kronecker graphs. These extensions provide for the use of

distributions with dimensions other than 2 × 2 and also give

a more rigorous procedure to fit the model’s parameters to

real graph data.

3 BENCHMARKING CHALLENGES
There are two issues of concern using Kronecker graphs for

benchmarking graph systems.

• Zero-degree vertices: The Kronecker model gener-

ates zero-degree vertices (i.e., vertices isolated from

the rest of the graph) in proportion to a complex func-

tion of its parameters, which means the real vertex

count does not actually grow exponentially with the

scale parameter.

• Degree distribution: The model produces a degree

distribution that is dramatically unlike any real dataset,

with implications for benchmarks that depend on the

degree, such as triangle counting (Figure 9).

In principle, a 2 × 2 Kronecker seed produces a graph

with |V | = 2
scale

vertices and |E | edges, where |E | = O(|V |)
for very large, sparse graphs. For example, the Graph500

specifies that the scale varies and the edge count covaries

by a constant factor 2
scale ∗ edдe f actor . Naively, one might

assume that using scale as an axis would produce a log-scale

plot. However, one would be wrong – isolated (i.e., zero-

degree) vertices reduce the effective size of the graph. That is,



for nearly every system and every algorithm, computing on

a one million node graph where half its vertices are isolated

is comparable to computing on a graph with 500,000 vertices

and is not comparable to computing on a graph with one

million non-zero degree vertices.

Seshadhri et. al. [24] show that: 1) in Kronecker graphs, a
large fraction of the vertices are isolated in expectation, and 2)

the fraction of isolated vertices grows with increasing scale
and a fixed edge factor. Using Graph500 settings, as the scale

parameter increases from 26 to 42, there is a corresponding

increase in the percentage of isolated vertices, from 51% to

74% [24]. While the scale parameter is intended to indicate

the logarithm base 2 of the number of vertices, in reality,

in plots of Graph500 graphs with the scale parameter on

the x-axis, the real vertex count is sub-exponential on the x-
axis, the edge count is exponential, and the average degree
is super-exponential. This is a mistake that past researchers

have made whilst doing scalability analysis of their graph

processing systems [18, 23]. It is particularly problematic as

synthetic graphs are most frequently used to demonstrate

scalability, because publicly released real world data sets are

sufficiently small to not pose any scalability challenges.

Figure 1 shows how the true number of non-zero degree

vertices falls remarkably short of the expected number of

non-zero degree vertices for any given scale factor value

for Graph500 parameters. For Graph500 parameters, to ob-

tain the “expected” vertex count of 2
scale

, one must usually

request two to four times as many vertices (i.e., increase

scale by one to two) and decrease the edgefactor proportion-

ally. This is not an error in the Kronecker model so much

as a misunderstanding between the graph modeling and

benchmarking communities. The graph modeling commu-

nity regards densification “with growth” as a key feature of

power law models, and Leskovec et al. present it as one of

the their model’s strengths [13]. However, this definition of

scale gives a complex x-axis with a non-trivial relationship

to simple benchmark parameters, such as the vertex count.

Figure 1:The real number of non-zero degree vertices falls re-
markably short of the expected number of non-zero degree
vertices as scale factor increases.

If a benchmark algorithm depends on the vertex count then

its relationship with this x-axis is similarly complicated.

Isolated vertices in the Kronecker model are a symptom

of a more serious problem. Figure 2 plots the frequency dis-

tribution of vertex degrees in a Kronecker graph drawn from

the Graph500’s default parameters. The graph’s distribution

is “combed” at regular geometric intervals, between which

vertices with a given degree are highly improbable. This dis-

tribution matches no real world data of which we are aware

and clearly may affect an algorithm whose expected runtime

depends on the degree distribution, such as triangle counting.

Moreover, the same combing appears in other fundamental

parameters, such as the k-core distribution. This combing

problem is so pervasive that it calls into question whether

Kronecker graphs ought be treated as representative datasets

for benchmarking purposes.

Seshadri proposes to smooth the distribution by indepen-

dently blurring each Kronecker iteration with uniform ran-

dom noise [24], i.e., “Noisy Kronecker”. With the application

of random noise, there are just as many expected degrees as

there are vertices, and the degree distribution is less clustered,

although in principle it still varies around the same combs.

This implies that noise must be applied once per graph and

not once per edge draw, otherwise the model converges back

to the combed distribution. Moreover, in the model where

noise is picked once per edge draw, there are k additional

random variables that determine the degree distribution. It

is crucial that k is not large, otherwise the noisy model con-

verges back to the same combs as the original. When using

these graphs for benchmarking, it is essential to control for

these random variables by running the benchmarks on a

large number of such graphs.

It is unclear how to introduce enough noise to get rid

of the combing without dramatically changing other key

features of the model, such as the diameter, number of tri-

angles, eigenvalue distribution, etc. Currently, eliminating

that combing requires a great deal of noise relative to the

seed distribution, which changes these other key features.

The Graph500 reference implementation includes a “noise”

parameter, but it is not part of the specification and is compiled
out of the reference code. When compiled in, it fixes the noise

draws for each level at uniform intervals along a range of the

noise parameters, [−n,n] and uses an altered noise equation,

for which it is not immediately obvious that Seshadri’s proof

on noise leading to a log-normal tail holds. This choice of us-

ing uniform random noise from a noise range [−n,n] causes
problems by altering the planted edge-cuts in the generated

graph.

In a series ofk random draws from the uniform noise range

[−n,n], the minimum draw in expectation is −n+2n/k , while
the Graph500 generator guarantees the minimum draw is

always −n. The ith iteration of the Kronecker generation



(a) (b) (c) (d)

Figure 2: The Combing Effect in the Degree-Frequency plot of Kronecker & R-MAT Graphs with Graph500 parameters S=16,
e=16, a=0.57, b=0.19, c=0.19 generated by (a) Graph500 [20] (b) Snap Kronecker [16], (c) Ligra’s R-MAT generator [25] (d) Tril-
lionG’s generator [22] with Noise=0.0

algorithm with minimum noise generates the ith bit of each

vertex. If we sort the vertices by this bit, this gives a bi-

partitioning of the graph in which the anti-diagonal is weak-

ened by the minimum noise. If the noise magnitude is signif-

icant, this will substantially reduce the expected edge-cut of

the any 2
k/2

-way partitioning in expectation, which realisti-

cally covers all practical partitionings for any large graph.

So, adding noise has both topological and spectral ramifica-

tions in proportion to the size of the noise. The topological

ramifications are particularly troubling: Synthetic graphs are

most frequently used in benchmarking when demonstrat-

ing the scalability of a graph processing system to multiple

machines. These systems therefore require partitioning the

graph. So, evaluators are left with two bad choices: use a

Kronecker generator without noise and an unrealistic degree

distribution or use noisy Kronecker, which will exaggerate

the efficacy of a distributed system, because the resulting

graph is more partitionable.

4 SMOOTH KRONECKER
Intuitively, both combing and isolated vertices are the re-

sult of the same process. Figure 3 illustrates, in the one-

dimensional case, that after k draws from the Kronecker

series, the number of unique sample probabilities grows as

k+1, not 2k . For a seed with two parameters, a andb, the first
Kronecker product of the seed with itself is [a2,ab,ab,b2].
Thus, each sample’s probability is a sum of its binary repre-

sentation, which is why there are only k + 1 unique sample

probabilities. Fundamentally, this means that there are expo-

nentially more vertices in a Kronecker model than there are

expected degrees.

The Smooth Kronecker algorithm smooths the degree dis-

tribution by resampling the seed distribution’s parameters

into two seeds whose dimensions are relatively prime to one

another, e.g., 2 × 2 and 3 × 3. By randomly substituting one

seed for the other, we smooth the Kronecker generator in

the same manner that adding noise would blur it. Crucially,

we derive the additional seed from the original seed distribu-

tion, so unlike graphs produced by noisy Kronecker, Smooth

Kronecker graphs preserve the Kronecker graph’s statistical

a3

a b

a2 ab ab b2

a2b a2b ab2 a2b ab2 ab2 b3

Figure 3: A one-dimensional Kronecker series with two dis-
tribution parameters, a and b. At iteration k the number of
samples is 2k but the number of unique sample probabilities
is only k + 1.

Figure 4: Sampling the leftmost third of the one-dimensional,
two-parameterKronecker series as it approaches infinity. To
sample the rightmost third swap a and b, and to sample the
middle subtract the left and right from the unit.

properties (e.g., diameter, triangles, etc.). The key idea is to

create one or more alternate d1 ×d1 seeds, sampled from the

distribution of the initial seed’s Kronecker product as it goes

to infinity, but with a dimension such that d1 is not a power
of d . Given a scale factor of k , we use the d1 ×d1 seed instead
of the d × d seed one out of k times.

Once again, consider the one-dimensional case with a two

parameter seed [a,b]. From the infinite Kronecker product

series of this seed, we want to downsample to obtain a three

parameter seed [x,y, z]. Figure 4 shows that x is just the

geometric series whose initial term is aa and ratio is ab; this
corresponds to the geometric series

1

3
= 1

4
+ 1

16
+ 1

64
+ . . . . y

and z follow similar geometric series. In general, any down-

sampled distribution can be explicitly solved as a geometric

series of d-ary fractions. The two dimensional case is just

the bilinear extension of the one dimensional case.

The alternative d1 ×d1 seed acts as a smoothing filter that

pushes the finite Kronecker product towards a better approx-

imation of the infinite Kronecker product. At any step in

edge generation, there is a 1/k probability that the distribu-

tion is locally smoothed by an alternative, but representative,



sample from the infinite series. The finite Kronecker product

gives an undersampled binomial degree distribution, but the

infinite Kronecker product gives a continuous log normal de-

gree distribution, so improving this approximation reduces

combing. Resampling and randomly substituting when we

use the resampled seed are just clever tools to efficiently ap-

proximate the infinite series without explicitly materializing

a large distribution. Algorithm 1 presents an algorithm for

using a 2 × 2 input seed with a 3 × 3 seed, which covers all

the popular Kronecker benchmark parameters.

The single d1 ×d1 seed increases the model’s vertex count,

so graphs drawn from this model are not directly compara-

ble to graphs drawn from a pure d × d model, because the

explicit scale is different. Fortunately, it is trivial to extend

this algorithm to arbitrary mixtures of d1×d1 and d×d seeds.

For example, 3
5
and 2

8
are approximately equal, so one can

substitute five 3 × 3 seeds for eight 2 × 2 seeds and preserve

the approximate scale. In fact, this gives our scale parameters

more degrees of freedom than the pure d ×d model, because

we are no longer restricted to purely logarithmic scales.

Algorithm 1 Smooth Kronecker Algorithm with a 2 × 2

input seed. Essentially, when we substitute the 3× 3 seed we

generate a trinary bit. This method generalizes to arbitrary

mixtures of d-ary seeds.

function Smooth Kronecker(A,B,C,D,k, e)
2 × 2seed ← [A,B,C,D]
3 × 3seed ← 3x3 Resample(A,B,C,D)
for e in edges do

source ← 0

tarдet ← 0

base ← 1

r ← Random Int(0,k)
for all i ∈ Range(0,k) do

if i , r then
cell ← Random Choice(2 × 2seed )

source ← source + (cell/2) ∗ base
tarдet ← tarдet + (cell%2) ∗ base
base ← base ∗ 2

else
cell ← Random Choice(3 × 3seed )

source ← source + (cell/3) ∗ base
tarдet ← tarдet + (cell%3) ∗ base
base ← base ∗ 3

end if
end for
Yield source, tarдet

end for
end function

Figure 5: Degree-frequency plot of a Smooth Kronecker
graph superimposed over the traditional Kronecker graph
generated using Graph500 reference from Figure 2a.

Figure 5 compares the degree-frequency of a traditional

Kronecker graph, previously shown in Figure 2a, to an equiv-

alent graph that substitutes five resampled 3 × 3 seeds for

eight of the original 2 × 2 seeds. The combing is almost

entirely corrected by the addition of the alternative seeds.

Note that combing is visible in the plots only when the

graph’s scale is relatively small. Increasing the scale visually

pushes the combs closer together in a fixed-width log-scale

plot, because the comb count is equal to the scale plus one.

Thus, at large scales the combs appear to blend together

and vanish, but this is strictly a visual illusion, because the

plot width does not increase in proportion to the scale. In

reality combing is more exaggerated at large scales, because

Figure 6: CCDF of the degree of a smoothedKronecker graph
superimposed over the traditional Kronecker graph from
Figure 2.



(a) Original Graph (b) Kronecker

(c) Noisy Kronecker (d) Smooth Kronecker
Figure 7: Degree-Frequency plots of the cit-HepTh graph [4] and equivalent Kronecker graphs with seed parameters a=0.4307,
b=0.23808, and c=0.1859.

each new comb is separated from its adjacent combs by a

geometric factor.

It is much easier to see details in the degree’s complemen-

tary cumulative distribution (CCDF); in this representation

the combs appear as “steps.” Figure 6 compares the CCDF of

the same traditional and smoothed Kronecker graphs. Here

we see that the smoothed graph actually follows the same

combing pattern as the traditional graph, but it is dampened

by orders of magnitude (note that the y-axis is also log scale).

This is further evidence that the 3 × 3 resampled seed acts

as a smoothing filter over the pure 2 × 2 series.

The original Kronecker generator and theNoisy Kronecker

generators do not generate graphs that have degree distribu-

tions that match that of real graphs. For example, Figure 7

shows the degree distribution of the High-Energy Physics

Theory dataset [4] from the SNAP website [15] along with

the degree distributions of three kronecker graphs: one with-

out noise, one with noise, and one smooth kronecker graph

that are generated to approximate the original graphs, with

parameters extracted from the KronFit algorithm [13]. To

generate the smooth version, we used twelve 2x2 seeds and

two 3x3 seeds instead of fifteen 2x2 seeds. The graph gener-

ated using the Smooth Kronecker has a degree distribution

that matches that of the real graph, unlike the graph gener-

ated from a noisy kronecker model.

The combing effect in Kronecker models is not limited to

degree frequency, but is also present in other parameters that

broadly measure “centrality,” such as k-cores. Figure 8 depicts

the k-core CCDF of a Kronecker graph and an equivalent

smoothed Kronecker graph.

Varying the degree distribution can lead to unexpected

speedups or slowdowns in benchmarks. Figure 9 shows the

runtime of Galois’ two different algorithms

[21], NodeIterator and EdgeIterator, for the triangle counting

benchmark, on original kronecker graphs from graph500 and

snap, a noisy kronecker graph fromPaRMAT, and our smooth



Figure 8: k-core CCDF of a Kronecker graph from graph500
and a smooth Kronecker graph with the parameters from
Figure 2a.

Figure 9: Triangle Counting runtime on Galois’ two triangle
counting algorithms for two noise-free Kronecker graphs
(Graph500 and Snap-Kron), a noisy Kronecker graph (Par-
mat), and a smooth Kronecker graph with the parameters
from Figure 2a.

kronecker graph. The benchmarkwas run 25 times with a hot

cache for each graph on a 32GB Intel i5 3.1GHz Linux desktop.

The triangle counting in Galois first does a degree sort on the

graph, and therefore explicitly eliminates variation that could

arise from vertex order randomization. The runtimes we see

appear to be, for the most part, related to the differences in

degree distribution; the more combed the distribution, the

faster triangle counting runs. Thus, benchmark results using

either Kronecker or noisy Kronecker might over predict

system performance. The difference between Kronecker and

Smooth Kronecker is between a factor of two and three,

depending on which algorithm is used; this is more than

the typical difference between systems evaluated in most

performance studies. The noisy Kronecker graphs do better,

but still produce optimistic results.

Figure 10: A smoothed Kronecker graph with fifteen 2 × 2

seeds and only one resampled 3 × 3 seed.

As shown in Figure 10, one resampled seed is enough to

produce a much smoother degree-frequency curve. Broadly

this means that many more vertex scales are possible in

the mixed-seed model; in principle one could realize any

vertex scale by factoring the desired scale and generating

appropriate seeds. However, recall that one motivation for

the seed-based Kronecker model is to avoid materializing

large distributions. Therefore it is not efficient to realize

vertex scales that are not the products of small factors. And

of course, one must avoid powers of primes, else the model

degenerates to the original Kronecker model. Like noisy

Kronecker, Smooth Kronecker does not significantly change

the isolated vertex count, because it intentionally follows

the degree distribution of the original Kronecker model, in

which many vertices have zero degree in expectation.

5 RELATEDWORK
It has been well established in literature that the genera-

tive graphs as created by the R-MAT [3] and the Kronecker

models[14] have many deficiencies as benchmarking data.

Seshadri et. al. [24] study the properties of the Kronecker

graphs and provide a thorough mathematical analysis that

demonstrates how the Kronecker model cannot generate a

power-law or a log-normal graph. As mentioned earlier, they

propose introducing noise to smooth the degree distribution

and provide analytical proofs for the same. The noise param-

eter introduced in their work is not widely used, because

there is no consensus on the amount of noise to add nor

the impact such noise has on the topological and spectral

properties of the graph. Most R-MAT and Kronecker genera-

tors we studied in this work, such as Ligra[25], SNAP[16],

and Graph500[20], employ different techniques for introduc-

ing noise into the seed matrices, and therefore, they lead to

unpredictable results.



There have been many alternative generative graph mod-

els proposed, such as the Multiplicative Attribute Graph

(MAG) model [10], a generalization of the Kronecker gener-

ative model. The MAG model can produce log-normal and

power law graphs, but it remains widely unused for generat-

ing large synthetic graphs for evaluation of graph processing

systems. Moreover, these recursive models are not efficient in

their space and time complexities and often fail to generate

massive graphs on commodity machines.

There have been other graph generators that address scal-

ability challenges in the R-MAT and Kronecker generators.

TrillionG[22] is one such synthetic graph generator that can

generate trillion-scale graphs on a cluster of commodity ma-

chines. TrillionG uses a scope-based generation model of

which the R-MAT and Kronecker models are extreme cases.

They also define a recursive vector model, which while sup-

porting the extreme case equivalence with Kronecker and R-

MAT models, is also able to generate graphs of massive scale.

TrillionG does not, however, solve the problem of combing

in degree-distribution and relies on adding random noise.

6 CONCLUSIONS
We have demonstrated that the use of synthetic Kronecker

graphs to evaluate graph systems is problematic as existing

Kronecker graph generators produce degree distributions

unlike any real graphs. We then introduced the Smooth Kro-

necker generator to address the unusual degree distribution

produced by current Kronecker and R-MAT generators. Our

approach significantly improves over the previously pro-

posed fix of Seshadhri et. al. In particular, smooth kronecker

smooths the degree distribution without changing key statis-

tical properties of the generated graphs.

Our use of these graph models is fundamentally different

from that of the authors of the original R-MAT and Kronecker

models. As originally proposed, R-MAT and Kronecker are

data mining models whose “parameters” are really metrics

given by a best-fit of the model to a given graph. In this

context, combing and isolated vertices are not really flaws,

but rather features of the model that one must account for

in the fitting process. Our goal is to address the use of the

Kronecker model as a synthetic benchmark model, as it has

become de facto practice to use it as such. In this context,

the model is not merely a mining abstraction, but instead

takes on a life of its own; real systems are evaluated and

presented on the basis of algorithm performance on Kro-

necker graphs. The Kronecker model enjoys this use not

simply because of its “realism,” but also because of practi-

cal features such as its trivial operations, trivial parallelism,

small data structures, and small parameters that are easy

to publish, reproduce, and compare. However, using these

kronecker graph generators for benchmarking presents a dif-

ficult dilemma. Using pure Kronecker graphs means that the

combed degree distribution will produce some benchmark

results quite different from what we expect on real world

graphs. Using noisy Kronecker graphs requires determining,

per-benchmark, how much noise to add. If the noise is fixed,

this translates into a new modeling parameter; if the noise is

truly random, producing accurate results requires averaging

across a collection of random graphs. Smooth Kronecker is

intended for this ecosystem. It preserves all the desirable

properties of the Kronecker graphs, remedies the combed

distribution problem, and enables generation of graphs with

scales other than 2
N
.

7 AVAILABILITY
The Smooth Kronecker source code is available at:

https://github.com/dmargo/smooth_kron_gen.
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A KRONECKER SEED RESAMPLING
Based on the discussion in Section 2, Algorithm 2 shows

how a given 2x2 seed matrix with parameters A,B,C,D are

resampled into a 3x3 seed matrix that is used by our Smooth

Kronecker Generator.

B NOISY KRONECKER GRAPHS
Figure 11 shows the effect of adding different amounts of

noise to the Kronecker graph generation. PaRMAT [9], an-

other open-source R-MAT generator, adds a small amount

of noise, but as shown in Figure 11b, the default amount of

Algorithm 2 Function to resample a Kronecker 2x2 seed

matrix into a 3x3 matrix

function 1DThird(A,B)
Yield A ×A(1 −A × B)

end function
function 2DNinth(A,B,C,D)

Riдht ← A × B × 1DThird(A +C,B + D)
Bottom ← A ×C × 1DThird(A + B,C + D)
Initial ← A ×A + Riдht + Bottom
Yield Initial(1 −A × D)

end function
function 3x3Resample(A,B,C,D)

a ← 2DNinth(A,B,C,D)
b ← 2DNinth(B,A,D,C)
c ← 2DNinth(C,A,D,B)
d ← 2DNinth(D,B,C,A)
ab ← 1DThird(A + B,C + D) − a − b
ac ← 1DThird(A +C,B + D) − a − c
bd ← 1DThird(B + D,A +C) − b − d
cd ← 1DThird(C + D,A + B) − c − d
x ← 1 − a − b − c − d − ab − ac − bd − cd
Yield a,ab,b,ac, x,bd, c, cd,d

end function

noise used is not enough to completely rectify the combing

effect present in the Kronecker graphs. Snap’s R-MAT gener-

ator [16] achieves smoothing of the degree-frequency distri-

bution, but does so at the expense of violating the Kronecker

model assumption that the sampling probabilities in the seed

sum to 1. Their R-MAT generator adds an unrestricted ran-

dom amount of noise to the sampling probabilities. Similarly,

the graph generator presented in TrillionG [22] uses a Noisy

Stochastic Kronecker Generator and therefore also suffers

from the combed degree-distribution.

http://snap.stanford.edu/data
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(a) (b) (c) (d)

Figure 11: Degree-Frequency plots showing Kronecker Graphs with parameters S=16, e=16, a=0.57, b=0.19, c=0.19 generated
with varying levels of noise using (a) Snap’s R-MAT generator [16] with no noise,(b) PaRMAT [9] with small noise (default
behavior), (c) TrillionG with noise=0.1, (d) Snap’s R-MAT generator [16] with more noise (default behaviour)
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