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Abstract

Researchers and practitioners care deeply about the per-
formance and correctness of microservice applications. To
investigate problematic application behavior and prototype
potential improvements, researchers and practitioners ex-
periment with different designs, implementations, and de-
ployment configurations. We argue that a key requirement
for microservice experimentation is the ability to rapidly
reconfigure applications and to iteratively Configure, Build,
and Deploy (CBD) new variants of an application that alter
or improve its design. We focus on three core experimen-
tation use-cases: (1) updating the design to use different
components, libraries, and mechanisms; (2) identifying and
reproducing problematic behaviors caused by different de-
signs; and (3) prototyping and evaluating potential solutions
to such behaviors. We present Blueprint, a microservice de-
velopment toolchain that enables rapid CBD. With a few
lines of code, users can easily reconfigure an application’s
design; Blueprint then generates a fully-functioning vari-
ant of the application under the new design. Blueprint is
open-source and extensible; it supports a wide variety of
reconfigurable design dimensions. We have ported all major
microservice benchmarks to it. Our evaluation demonstrates
how Blueprint simplifies experimentation use-cases with
orders-of-magnitude less code change.
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1 Introduction

Modern cloud applications are increasingly developed as
suites of loosely-coupled microservices [17]. The microser-
vice architectural approach decomposes applications into
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smaller, modular services that communicate over the net-
work. As a result of their success in enabling large-scale and
continually-evolving applications, microservices have be-
come ubiquitous among internet companies including Twit-
ter [30], Netflix [16], Uber [29], and others [17].

Microservices are large and complex applications, com-
posed of multiple pieces including frameworks, backends,
and libraries. For any application, there are many possible
designs, each with its own set of performance properties
and issues. As a result, researchers are highly interested
in studying, measuring, and improving the performance
and correctness guarantees of microservice systems, and
developing solutions to potential unwanted behavior when
they arise. A salient example of unwanted behaviour are
emergent phenomena [48] of microservice systems which in-
clude cascading failures [52, 70, 75], tail latency effects [18],
cross-system consistency [3], and metastable failures [15, 33],
among others. By analyzing these behaviors, researchers
hope to improve the performance and correctness guarantees
of microservice systems, and develop solutions to potential
unwanted phenomena [15, 33, 43, 55, 61].

Towards this goal, researchers, both in academia and in-
dustry, need to be able to perform three basic actions: (i)
reconfigure applications with new features, backends, and
libraries to improve their performance and add new features;
(ii) reproduce and discover potentially problematic emergent
phenomena of applications; and (iii) develop and evaluate
solutions on canonical microservice systems. The central
requirement of these use-cases is for researchers to easily
explore the design space of microservices, allowing them to
move between different implementations and deployment
configurations of the same application quickly and easily.

Enabling design space exploration is difficult for several
reasons. First, the design space of microservice systems is
enormous. Application design, configuration, and deploy-
ment choices vary along several dimensions: specific patterns
in the flow of application logic (e.g. the presence of concur-
rent or asynchronous execution branches); the inclusion of
particular features, components, or middleware (e.g. repli-
cated services, autoscaling, and sharding); and component
instantiations and their corresponding configuration (e.g.
the specific RPC framework used and its timeout and retry
mechanisms). Given the lack of standardization across these
axes, it is not immediately clear how to support all possible
application design dimensions and all possible instantiations
for a given dimension in a systematic manner.
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Second, existing microservice systems, both experimen-
tal and production-grade, are implemented as point solu-
tions in this vast design space and are not designed to be
reconfigurable or extensible. Thus, the entire burden for
moving from one implementation to another falls on the
researcher as they have to make deep modifications to mi-
croservice applications to fulfill their use-case. A high-level
design change, such as replacing the RPC framework, typ-
ically translates into thousands of LoC of source-level im-
plementation changes, dispersed across the many processes,
components, and backends that comprise the microservice
application (cf. §3.1). Implementing a design change is time-
consuming, error-prone, and difficult, as it requires under-
standing the application at the source-code level; yet mi-
croservice implementations tightly couple concerns at the
source-code level, i.e. application logic directly binding to li-
braries and middleware. Thus, changes that are conceptually
simple - e.g. replacing an existing RPC framework with a
different one - can require wide-ranging and complex man-
ual modifications to many components. Most prior research
work on microservices had no alternative to expending this
developer effort, and consequently the majority of works
deploy and evaluate solutions for only a single application
(78%, cf. §B); anecdotally, the developer burden is the limiting
factor.

Due to the large design space of microservice applications,
there is a significant concern about the generalizability of
research results derived from only a single application. A
solution may have implicit dependencies on particular ap-
plication design choices, or worse, it may be an application-
specific solution that does not apply broadly at all. For exam-
ple, Sage [25] assumes synchronous RPCs and Tprof’s [34]
layer4 grouping assumes assumes non-combinatorial explo-
sion when grouping requests by visited services’ execution
order; both of which do not hold at Meta [35]. Under normal
circumstances, a lack of broad evaluation would be consid-
ered a benchmarking crime [31]. However, for microservices
it is the prevailing norm.

The goal of this work is to enable researchers to easily re-
configure microservice applications. Our solution, Blueprint,
is a microservice development toolchain designed for rapidly
Configuring, Building, and Deploying (CBD) microservices.
Blueprint enables its users to easily mutate the design of
an application and generate a fully-functional variant that
incorporates their desired changes.

The key insight of Blueprint is that the design of a mi-
croservice application can be decoupled into (i) the application-
level workflow, (ii) the underlying scaffolding components
such as replication and auto-scaling frameworks, communi-
cation libraries, and storage backends , and (iii) the concrete
instantiations of those components and their configuration.
An application written using Blueprint avoids tightly cou-
pling these concerns. Instead, these design aspects are con-
cisely declared by the user using Blueprint’s abstractions,

namely, the workflow spec and the wiring spec. Blueprint’s
compiler combines these two abstractions to automatically
generate the system. Changing any given aspect only requires
the developer to revisit its declaration in Blueprint’s abstrac-
tions and not the generated implementation. Moreover, Blue-
print eliminates duplicated effort — scaffolding and instantia-
tion logic are implemented once and integrated as Blueprint
compiler extensions, to enable Blueprint to automatically
change existing Blueprint applications with minimal effort.
Concretely, using Blueprint, users can:

o mutate off-the-shelf microservice applications (e.g. an open-
source benchmark) with just a few LoC, to swap an instan-
tiation (e.g. RPC framework), enable or disable scaffolding
(e.g. replication), or change backends (e.g. database).

e develop new application workflows and generate runnable
systems. Instead of binding workflow code to specific scaf-
folding and instantiations (e.g. the choice of RPC frame-
work), those are declared separately with 10s of LoC, and
incorporated by Blueprint at compile time.

e introduce support for new instantiations (e.g. an experi-
mental RPC framework) or scaffolding concepts (e.g. geo-
replication) and transparently apply them to existing ap-
plications; these are implemented as compiler extensions
that are independent and agnostic to specific application
workflows.

We have implemented Blueprint in 11k LoC of Go and
ported all major available microservice benchmarks to Blue-
print (15k LoC), including the DeathStar benchmark [26],
TrainTicket [76], and SockShop [47]. Our evaluation demon-
strates the ease with which Blueprint enables changes to the
design and features of an application; we reproduce known
interesting behaviour from a number of prior works; and
show that Blueprint is easily extensible with new features
that can be reused across applications.

2 Microservice Design Space

The space of possible designs for microservice applications is
enormous, and while there may be guiding high-level design
principles, every application differs substantially from the
next. In this section, we briefly elaborate three important di-
mensions for the design of a microservice application. These
axes are useful both for motivating Blueprint’s use cases (§3)
and as insights into Blueprint’s design (§4).

A microservice application’s design can be principally
decomposed along three major dimensions: the application-
level workflow; the lower-level scaffolding infrastructure
on which the workflow executes; and instantiations for
different infrastructure implementations.

Application-Level Workflow. Microservice applications
vary widely in terms of their application-level logic and end-
to-end flow of executions through the system’s different com-
ponents. Recent open-source microservice benchmarks cover



diverse domains, such as e-commerce apps [28, 47, 71, 72],
social networks [26], reservation systems [26, 76] and many
others [2, 6, 26, 36, 66]. These applications differ in the num-
ber of services and APIs they use internally from only a few
(SockShop [47]) to dozens (TrainTicket [76]). Even applica-
tions with similar high-level goals (e.g. TrainTicket [76] and
DSB Hotel Reservation [26]) have vastly different workflows.

Scaffolding. Scaffolding refers to runtime components
which are necessary for executing an application but orthog-
onal (and opaque) to the application’s workflow. Scaffolding
includes middleware, framework, libraries and backends that
provide features such as RPCs, replication, load balancing,
circuit breakers, and more [11]. Scaffolding can be changed
without affecting the application’s workflow and functional
behavior. For example, the original DSB Social Network [26]
uses one runtime instance of each service by default; how-
ever, a changed version of the application could modify its
scaffolding to replicate service instances, without changing
the end-to-end application workflow [42].

Instantiations. For every piece of scaffolding there may
be different implementations to choose from, configuration
dimensions of those implementations, and choices for config-
uration parameters, e.g. to enable RPC an application may use
gRPC, Thrift, or some research prototype framework [39].

Overall, the choice of an application’s workflow, scaffold-
ing, and instantiations have different implications for the
application’s performance, correctness, and reliability.

3 Blueprint Use-Cases

This section outlines challenges faced by researchers today
with respect to three core use-cases. Across the three use
cases, we motivate a common need to iteratively Configure,
Build, and Deploy (CBD) variants of microservice applica-
tions that have subtly different designs. Blueprint, which we
will introduce in §4, is designed to address this need.

3.1 UC1: Mutating Applications

To investigate and experiment with changing workloads and
deployment conditions, researchers may wish to mutate an
application — i.e. change, reconfigure, or expand some as-
pect of its design. A mutation modifies the application along
one or more of the aforementioned axes (§2). For example,
changing the RPC framework from Thrift to gRPC is a muta-
tion that only modifies instantiations; introducing replicated
services and a load balancer is a mutation that modifies both
scaffolding and instantiations; and refactoring the applica-
tion workflow is a mutation that typically leaves scaffolding
and instantiations untouched [19]. Ultimately, these changes
modify the application to move its design from one point to
another in the design space, creating a new variant of the
application.

Ideally, users should be able to mutate an application with
minimal effort. Yet today, a conceptually simple mutation

may require far-reaching and time-consuming modifications
to source code and configuration. For example, switching to
a different RPC framework instantiation in an application
with 30 services requires modifying all of those services. Re-
placing one instantiation with another is difficult because
interfaces offered by instantiations of the same piece of scaf-
folding can differ widely, and existing systems tightly couple
the application’s workflow, scaffolding, and instantiations.
Similarly introducing new scaffolding, such as enabling dis-
tributed tracing, entails exhaustively updating all services
to support it; and changing an application’s workflow re-
quires binding the new or changed code to scaffolding and
instantiation interfaces.

To understand the scope of mutations to existing microser-
vice applications, we surveyed 464 forks of popular microser-
vices benchmarks. We found a total of 146 application vari-
ants that apply mutations that include adding tracing, re-
moving tracing, adding replication, adding georeplication,
switching RPC frameworks, and more (cf. §B.3). As an exam-
ple of the cost of manual mutations, an instantiation change
in DSB Social Network [26] to support Sifter [40] required
1,289 lines of manual code change and took 2 weeks to com-
plete based on commit timestamps (cf. §6.3).

3.2 UC2: Reproducing Emergent Phenomena

Emergent phenomena, or emergent behaviors [48], are as-
pects of the system’s runtime behavior that are not local-
ized to any one service or component, instead arising as
the cumulative effect of interactions between components
under a given workload and application design. Emergent
phenomena encompass end-to-end performance, correct-
ness, and reliability concerns of an application — notable
examples include cascading failures [52, 70, 75], tail latency
effects [18], cross-system consistency [3], laser of death [51],
and metastable failures [15, 33]. See §B.1 for a detailed list
of known emergent phenomena.

Left unchecked, emergent phenomena can lead to de-
graded service and even outages [46, 50, 51]; thus they are
the focus of a range of recent work from both industry [61]
and academia [15, 33, 43, 55]. In general, researchers need
the ability to elicit emergent phenomena in microservice
applications, to determine the conditions under which they
emerge, and their effects on application behavior.

Few existing microservice systems exhibit emergent phe-
nomena out-of-the-box, as they arise due to specific work-
flow, scaffolding, or instantiation choices, combined with
workloads and deployment conditions. To study emergent
phenomena, researchers must therefore mutate existing ap-
plications to find variants that exhibit the phenomena. For
example, no out-of-the-box microservice benchmark exhibits
cross-system inconsistency [43, 61] or metastable failures [15];
researchers studying these phenomena manually mutate ex-
isting microservice applications to elicit them [22, 42].



It is not straightforward to identify a design that exhibits
an emergent phenomenon. Changes to the scaffolding or
instantiations can affect performance and error-propagation
characteristics non-linearly, making it difficult to predict the
effects of even minor alterations. Moreover, certain emergent
phenomena only manifest under specific workloads which
are not known to developers a priori. Overall, this makes em-
pirical exploration of the design space essential: researchers
may need to mutate an application multiple times before
finding a variant that clearly exhibits a given phenomenon.

3.3 UC3: Prototyping and Evaluating Improvements

Researchers often need to prototype and evaluate improve-
ments to microservice applications. An improvement can
include applying workflow design patterns [19], enabling
novel scaffolding [42], and implementing instantiations with
better properties than the existing ones [39]. Improvements
typically target some performance, correctness, or reliability
concern, e.g. the application’s scalability, latency, or some
emergent phenomenon. For example, FIRM [55] is an im-
provement for mitigating SLO violations; it leverages dis-
tributed tracing scaffolding and introduces a novel orches-
tration scaffolding and instantiation.

To develop and evaluate improvements, it necessary to
mutate existing applications to incorporate the improvement.
This entails the same degree of manual overhead described
for UC1 and UC2, but is exacerbated in two ways: first, devel-
opment may require multiple iterations of design to converge
on appropriate interfaces, potentially entailing repeated mu-
tations over time integrating successive versions of the im-
provement; second, best practices for rigorous evaluation
demand that any improvement should be evaluated across
multiple, diverse applications [31], thus requiring effort to
mutate multiple applications, not just one.

Due to the high cost of mutating applications, most re-
search works today evaluate on only a single microservice
application (78%, cf. §B.2). Consequently it is difficult to
distinguish whether a proposed improvement would be sim-
ilarly effective for other applications, or just for the specific
application selected. Moreover, an improvement might make
assumptions about an application’s design that restricts its
broader applicability. For example, FIRM [55] assumes a de-
terministic critical path for each AP, so might not apply to
workflows with concurrent or branching RPC calls.

4 Design

Blueprint is a toolchain that offers first-class CBD support for
microservice applications. Instead of directly implementing
runnable application artifacts (e.g. code, container images,
etc.), these are generated by Blueprint’s compiler. Developers
are still responsible for implementing application workflows
(or re-using open-source workflows), and these must adhere
to Blueprint’s abstractions. Likewise developers must sepa-
rately specify which scaffolding and instantiations to apply

to the workflow. Blueprint’s compiler will automatically gen-
erate the necessary artifacts (e.g. glue code, configuration,
wrappers, scripts, and more) to produce a runnable variant.

Separation of Concerns. Blueprint’s key insight is that
an application’s workflow, scaffolding, and instantiations are
conceptually orthogonal and thus should be separable when
specifying the application. The workflow of an application
is independent of the specific choice of, e.g. RPC library, or
the presence of particular scaffolding, e.g. replication. In to-
day’s applications these are tightly coupled, with application
code that intertwines workflow, scaffolding, and instantia-
tions, yet the interfaces between them are narrow because
they are conceptually separate concerns and little informa-
tion is needed of one to specify the other. Blueprint thereby
only combines workflow, scaffolding, and instantiations at
compile time, thus avoiding tight-coupling or hard-coding.
Compile-time integration. Despite a clean conceptual
separation between workflow, scaffolding, and instantia-
tions, in practice these manifest in diverse ways and at dif-
ferent granularities, e.g. application-level libraries, sidecar
processes, container images, and orchestration framework
configuration. Compile-time integration thus becomes nec-
essary for Blueprint to abstract across diverse granularities.
Blueprint’s compiler encapsulates a wide range of concerns
ranging from code, process, and container image generation,
to templating, dynamic addressing, and configuration.

Examples. Blueprint enables users to:

e obtain variant applications by simply recompiling with
different scaffolding and instantiation choices.

e mutate an application by changing as little as 1 LoC.

e change instantiations (e.g. RPC, database implementa-
tions) with as little as 1 LoC.

e develop or change workflows with less cognitive over-
head, since workflow logic is not coupled with scaffolding
or instantiations.

e integrate new instantiations and scaffolding concepts
as one-shot compiler plugins, reusable by any existing
or future application. Implementing a plugin does not
require knowledge of or compatibility with other plugins.

4.1 Blueprint Applications

A Blueprint application consists of two key abstractions.
The workflow spec abstraction is the implementation of the
application’s workflow. The wiring spec abstraction declares
the scaffolding and instantiations to apply to the workflow.
We describe each in detail.

Workflow Spec.  The basic building block of a workflow
is Blueprint’s service abstraction: developers can declare an
interface for the service with typed methods, and provide
an implementation of those methods. Blueprint currently
supports Go. Fig. 1 defines a ComposePost service from the
DSB Social Media application [26] that enables callers to
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type ComposePostService interface {
ComposePost(ctx context, userID int64, text postContent) error

}

type ComposePostImpl struct {
postStorageService PostStorageService
userService UserService

}

func NewComposePostImpl(ps PostStorageService, us UserService) *
ComposePostService {
return &ComposePostImpl{ps, us}
}

func (c *ComposePostImpl) ComposePost(ctx context, userID int64, text
postContent) error {
creator, err := c.userService.GetUser(ctx, userId)
post := Post{Creator: creator, Text: text}
return c.postStorageService.StorePost(ctx, post)
}

Fig. 1. Workflow Spec for DSB Social Network ComposePost.

type Cache interface {

Put(key []byte, value []byte) error
Get(key []byte) ([]byte, error)

}

Fig. 2. Built-in interface for a cache backend component.

normal_deployer : Modifier = Docker()

rpc_server : Modifier = GRPCServer()

tracer : Tracer = ZipkinTracer()

tracerModifier: Modifier = TracerModifier(tracer=tracer)

server_modifiers : List[Modifier] = [rpc_server, normal_deployer,

tracerModifier]

post_cache := Memcached()

post_db = MongoDB()

user_db = MongoDB()

us = UserServiceImpl(user_db).WithServer(server_modifiers)

ps = PostStorageServiceImpl(post_cache,post_db).WithServer(
server_modifiers)

Container(ps,post_cache)

ComposePostServiceImpl(ps, us).WithServer(server_modifiers)

cl
cs

Fig. 3. Wiring Spec for three dependent DSB services. Zipkin tracing
is enabled for all services; they are deployed in Docker containers;
and communicate using gRPC. Cache and database instantiations
are Memcached and MongoDB respectively.

upload new social media posts. Method implementations
can be arbitrary and import arbitrary libraries.

Blueprint’s backend abstraction offers interfaces for differ-
ent kinds of backends such as caches, databases, and queues;
Fig. 2 depicts a simple Cache interface. Unlike for services,
a backend instantiation will have method implementations
provided as part of its Blueprint compiler integration, e.g.
memcached will provide a memcached client.

Blueprint imposes a dependency injection pattern on ser-
vice implementations. A service can invoke the methods of
another service or a backend (Line 12). However, a service
is forbidden from instantiating other services or backends,
which can only be received as constructor parameters (Line
8). Likewise, although invoking another service is simply a
method call in the workflow spec (Line 12), the developer
should not assume that other services and backends are run-
ning in the same address space, correspond to just a single
instance, or are of a particular implementation. Services do
not directly incorporate any scaffolding (e.g. configuring an
RPC server) or bind specific instantiations (e.g. binding to

a memcached client library) as these are automatically in-
tegrated later by Blueprint’s compiler. Blueprint uses Go’s
error-handling conventions to wrap and encapsulate errors
that may be introduced from scaffolding, and Go’s context
propagation for implementing scaffolding such as tracing.
The above restrictions are necessary for several reasons.
First, the addressing scope of callee services can vary - they
could be application-level instances in the same address
space, or running in separate container instances in a differ-
ent datacenter, requiring network calls and address transla-
tion. Second, scaffolding may interpose calls between ser-
vices, e.g. to add functionality like tracing or to implement
RPCs. Third, scaffolding may duplicate or replicate service
instances in some way. In all cases, Blueprint’s compiler is
responsible for later generating the code that instantiates,
configures, and addresses services, at the application, process,
and container granularities. §4.2 relates the above service
abstraction to corresponding compiler abstractions.
Blueprint includes numerous out-of-the-box open-source
applications, and once a developer has implemented an ap-
plication’s workflow spec it only needs to be revisited if
workflow logic needs to change. Changes to scaffolding and
instantiations happen through Blueprint’s wiring spec.

Wiring Spec.  The wiring spec declares the topology of
the application, applies scaffolding, and configures instan-
tiations. Fig. 3 depicts a wiring spec for three dependent
DSB services [26]. Wiring is declared using a strongly-typed
DSL with C-style macro support (Fig. 3). The wiring spec
declares instances of services named in the workflow spec
(Line 9) and links instance dependencies (Line 12); it also
declares and links instantiations of backends (Line 7) and
scaffolding (Line 2). The wiring spec also groups instances
into deployment units such as processes and containers.

To enable scaffolding, the user refers to it using unique
keywords and syntactic sugar in the wiring file (Line 2, 4).
A corresponding compiler plug-in will be invoked during
compilation to generate and modify code and other artifacts.
Scaffolding can potentially apply to service instances, pro-
cesses, or container images, depending on the specific feature
it enables. For example, Zipkin tracing (Line 3) applies to
service instances by wrapping with proxy classes.

A typical wiring spec is concise — tens of LoC - and easily
modified by other Blueprint users. Users do not need to
touch the workflow spec to enact changes in the wiring spec.
Blueprint will recompile an application variant, potentially
generating substantially modified code artifacts, without
requiring manual intervention from the user.

Compiler Plugins.  Scaffolding and instantiations are im-
plemented as compiler plugins. Most applications will make
use of Blueprint’s out-of-the-box compiler plugins; however
a researcher wishing to prototype new functionality or im-
provements may wish to integrate that functionality with
Blueprint by developing a compiler plugin. Compiler plugins



integrate with Blueprint in three places. First, a plugin can
introduce keywords and syntatic sugar to the wiring spec.
Second, as described in the next section, a plugin can ex-
tend Blueprint’s IR to add new node types or extend existing
node types. Third, a plugin provides logic for generating
code, configuration, and other artifacts specific to the plugin.
For example, Blueprint’s gRPC plugin invokes the Protocol
Buffers compiler and generates client and server wrapper
classes. Blueprint is designed in a way that implementing a
plugin is independent of the implementation of any other
plugins. Most core concepts of Blueprint are implemented as
compiler plugins, e.g. application-level Go service instances,
Go processes, and Docker containers.

4.2 Intermediate Representation (IR)

The canonical representation of a Blueprint application is the
compiler’s Intermediate Representation (IR). Blueprint’s com-
piler takes as input an application’s workflow spec, wiring
spec, and enabled compiler plug-ins. The IR of an application
is a verbose and well-structured graph that represents the
concrete layout and hierarchy of components along with
their interactions. The IR of an application depends on both
the workflow and wiring spec, and a change to just the wiring
spec (e.g. to add replication) will result in a different IR. The
IR is designed to support the flexibility and extensibility of
the compiler. Fig. 4 depicts the IR graph for the wiring spec
outlined in Fig. 3.

Component Nodes. Components are entities that will ul-
timately be instantiated in the generated system; they are rep-
resented as nodes in the IR. All services defined in the work-
flow spec have corresponding component nodes; likewise all
backends and instantiations. Component nodes can exist at
different granularities, e.g. representing an application-level
service instance, a pre-defined binary (e.g. a MongoDB in-
stance), or a pre-built container image (e.g. a ZipkinServer).
IR nodes are typed and plugins may introduce new IR node
types and implementations.

Namespace Nodes. Components of the same granularity
can be grouped under a namespace node to create a compo-
nent of coarser granularity. For example, a Go namespace
node groups together application-level instances (e.g. ser-
vice instances) into a single Go process. Similarly, a process
namespace can be grouped into a container, and a container
namespace into a deployment. During compilation, names-
pace nodes generate runnable artifacts (e.g. code, container
images) that instantiate their contained components. Typing
on nodes ensures that namespace nodes can only contain
children of a compatible granularity. Blueprint can be ex-
tended with new namespaces; e.g. support for georeplication
would introduce a region namespace; supporting C++ work-
flows would introduce a Cpp namespace.

Dependencies.  Services in the workflow spec can invoke
other services and components; in the IR these dependencies

are represented as edges between component nodes. RPC
edges are directional indicating the caller-callee direction
and declare the method signatures of the invocations.

Modifier Nodes. Scaffolding can interpose edges between
components, e.g. to modify method signatures, add proxy
functionality, or enable addressing across address space bound-
aries. We call these modifier nodes because they attach to
component nodes and mutate the component’s edges (e.g. to
introduce client side and server side code). Modifiers must
be opaque to the caller component whom expects a par-
ticular method signature from the callee; thus a modifier
typically comprises a client-side transformation function
and a corresponding server-side function that inverts the
transformation (e.g. serialization and deserialization).

Visibility and Addressing. Dependent components can
run in different processes, containers, or machines. For exam-
ple, an application could be compiled as an all-in-one process,
or using a container per service. Although there may be an
edge between two components, it is possible that those com-
ponents are not visible to each other, e.g. if a service has not
been wrapped with an RPC server, it cannot receive remote
invocations. Thus, edges between components are annotated
with their visibility level. Nodes can expand the visibility of
any edge traversing outside that node, e.g. an RPC modifier
enables communication between processes.

Generators. A component declared in a wiring spec might
correspond to a single concrete runtime instance (e.g. those
in Fig. 3), or as a result of applying modifiers, to multiple
runtime instances. For example, an autoscaling modifier
might dynamically create and destroy multiple component
instances at runtime. In general, generator nodes contain
other nodes and represent instances that will be dynami-
cally created at runtime. Generators restrict the visibility of
contained nodes, since there will be multiple dynamically-
generated instances of the contained nodes. Generators are
typically coupled with functionality such as a load balancer
to enable addressing of the dynamically created instances.

4.3 Compilation

Blueprint compiles an application in two steps. First, it pro-
cesses the wiring spec and workflow spec to instantiate
the specific IR graph representing the application and its
topology. Second, it invokes compiler passes and scaffolding-
specific plugins to generate the runnable artifacts. We explain
both steps in detail below.

4.3.1 Wiring & Workflow Spec to IR

Blueprint parses the workflow spec to identify all workflow
services that have been defined, and loads the definitions
of standard library backends that can be instantiated. Next,
Blueprint processes the wiring spec to extract the list of
components instantiated in the wiring spec, creating the
appropriate IR nodes for each. Blueprint applies modifiers
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Fig. 4. A depiction of Blueprint’s IR for the three DSB services outlined in Fig. 3. Node shape is based on node type, and nodes are colored
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to components by creating additional IR nodes represent-
ing the scaffolding. Blueprint then creates directed edges
between components to encode the dependencies defined in
the wiring spec. Blueprint then extracts the various compo-
nent groupings and granularities to generate the namespace
nodes as well as to add the visibility attributes to the depen-
dency ages between the component nodes. Lastly, Blueprint
performs a pass on the IR graph to allow modifier nodes to
add, delete, or change nodes in the IR graph. For example, a
replication modifier could duplicate the IR nodes represent-
ing a component, and insert a load balancer node.

4.3.2 IR to Implementation

Once the IR graph is constructed, Blueprint checks the vis-
ibility of edges, i.e. that any component that calls another
component will be capable of doing so. Blueprint then pro-
ceeds to the artifact generation step. Each node of the IR
graph will have plugin-specific logic for generating its own
code, configuration, or artifacts needed for instantiating the
component in the system. Blueprint traverses the IR graph,
invoking plugins at IR nodes and collecting the artifacts that
are generated.

Artifact Generation. Blueprint generates code and arti-
facts in a hierarchical manner, starting from the innermost
nodes in the IR graph. For service nodes defined in the work-
flow spec, no extra code generation is required and only
dependencies are gathered. For modifier nodes, the compiler
invokes the plugin that corresponds to the node. The output
of the previous node is passed as input to the plugin, allowing
the plugin to potentially generate code that wraps, extends,
or changes the previous output. For namespace nodes such
as go processes or docker containers, generating code en-
tails packaging code generated by the ¢ ontained nodes, and
generating code that instantiates those nodes.

As an example, consider the generation process for the
ComposePostService in Fig. 3. The generation procedure
starts at the ComposePostServicelmpl node, cs, in Fig. 4. This
node simply gathers the code dependencies directly from the
workflow spec where it is defined. The compiler then steps
outwards to the ZipkinModifier which inspects the method
signature list of cs and generates a wrapper class that adds

trace contexts to all methods. Next, the gRPC plugin gener-
ates protobuf RPC message definitions for the expanded cs
methods, invokes the gRPC compiler, then generates client
and server instantiation code. The compiler proceeds in in-
verse topological order and next invokes the Go Namespace
plugin to package all contained code and generate a main
method that instantiates the service, wrappers, RPC server,
and clients to dependencies. The compiler proceeds similarly
for process nodes and container nodes.

Resolving Dependencies.  As part of the generation pro-
cess, Blueprint gathers code dependencies across namespaces
from the IR graph to ensure that remote components are ad-
dressable. For example, if a service invokes another over RPC,
running in a different container, it must therefore include
client code for the target service and its modifiers. Any node
crossed by this edge must receive and forward the target ser-
vice’s address as an argument (i.e. so that the target service
binds to an address that the source service can dial, and so
that docker containers publicly expose the relevant ports).
If the remote components are not addressable by a service,
Blueprint’s compiler will return an error citing that the edge
between the two services lacks the necessary visibility.

5 Implementation

Blueprint is implemented in Go in 10,892 LoC, which includes
Blueprint’s compiler, the wiring spec DSL, component in-
terfaces and their implementations, debugging and logging
features, and other features implemented as modifiers.

Blueprint’s compiler is implemented in 4062 LoC. Blue-
print provides first-class support for Go workflow specs.
We selected Go because it is designed specifically for high-
performance RPC services, and has convenient mechanisms
for handling concurrency, errors, and context propagation.
Blueprint is not constrained to Go; the abstractions of Blue-
print enable extension to multiple languages with no ad-
ditional difficulty. Blueprint’s wiring spec is currently a
Python-based DSL that also allows C-style macros; this is
771 LoC, and we are considering more flexible programmatic
approaches for future work.



We reimplemented five applications from three microser-
vice benchmark suites described in the literature: the Social-
Network, Media, and HotelReservation applications from
the DeathStar Benchmark (DSB) [26], TrainTicket [76], and
the SockShop benchmark [47]. We present an analysis of
the LoC effort required for porting these applications in §6.1.
We additionally outline the features currently supported by
Blueprint in §6.5 and the LoC of implementation required to
implement the compiler plug-ins.

6 Evaluation

Our evaluation of Blueprint seeks to answer the following:

e Does Blueprint reduce effort for design space exploration
(UC1)? (§6.1)

e Can Blueprint help reproduce emergent phenomena in
microservice applications (UC2)? (§6.2)

e Does Blueprint reduce effort for prototyping improve-
ments (UC3)? (§6.3)

e Are Blueprint-generated systems realistic? (§6.4)

o Is Blueprint easy to extend with new scaffolding and in-
stantiations? (§6.5)

e What is the cost of Blueprint’s abstractions? (§6.6)

Experimental setup. All experiments use a cluster com-
prising eight machines, each with four Intel Xeon E7-8857V2
processors, 48 cores and 1.5 TB RAM. We deploy each service
in a separate container. We use a simple open-loop work-
load generator that can be configured to exercise APIs of
the generated system with a specified request rate and API
distribution; this runs on a separate machine.

6.1 UC1: Design Space Exploration

Reducing Implementation Effort. To demonstrate that
Blueprint makes it easy to implement realistic microservice
systems not specifically designed for our evaluation, we have
re-implemented five existing microservice applications in
Blueprint. We selected these systems based on their popu-
larity in microservice research as highlighted in §B.2. Tab. 1
shows the LoC needed to implement the workflow spec and
wiring file for each application in Blueprint. We compare
the LoC needed to those in the original implementations.
Blueprint reduces the code footprint by 5-7x for each appli-
cation by eliminating the need to implement scaffolding and
instantiations alongside workflow code. In the original imple-
mentations, scaffolding was tightly coupled with workflow
code, thus inflating the amount of code that a user needed
to write. By decoupling the workflow specification from the
scaffolding code and moving scaffolding code generation
to the compiler, Blueprint reduces the volume of code re-
quired to implement a workflow. One beta user of Blueprint
noted that this decoupling also made it easier for them to
understand and implement the workflow specification.

Orig. Blueprint (LoC)

System Reduction
Y (LoC) Spec  Wiring

DSB SocialNetwork 8209 1478 57 5.4%

DSB Media 7794 1401 42 5.4X

DSB HotelReservation 5 160 679 63 7.0%

TrainTicket 54466 9639 166 5.6X

SOCkShOp 13987 2261 40 6.1X

Tab. 1. Lines of code of original and Blueprint implementations of
popular open-source microservice systems

Changing workflow specs. We compare the LoC re-
quired to make a change to the design of the application
in the original system and compare that to the effort to im-
plement the same change in the Blueprint implementation
of the application. In pull request #101 of DSB SocialNet-
work [19], the authors inverted caller-callee relationships be-
tween ComposePostService and TextService, UniqueIDSer-
vice, UserService, and MediaService to improve application
performance. They modified 5,140 LoC. We implemented the
same change in the Blueprint version of the system by mod-
ifying 288 LoC of workflow spec, and 7 LoC of wiring spec —
a 17X reduction. The substantial difference in code changes
arises due to Blueprint’s separation of concerns: in the origi-
nal implementation, changing interfaces between services
required changing scaffolding and instantiation code, which
was tightly coupled with workflow code. However, with
Blueprint, scaffolding and instantiation code changes are
handled by the compiler, and only the workflow specifica-
tion required manual changes.

Changing scaffolding and instantiations. Blueprint
makes it easier to enable or disable new scaffolding in an
application. Based on our survey in §B.2, we found that a
popular change in existing microservice systems is to enable
or disable tracing [5, 13, 32, 37]. For example, disabling trac-
ing in a variant of DSB SocialNetwork required 418 LoC [37].
In contrast, the same change required 5LoC wiring spec
change for the Blueprint implementation of DSB Social Net-
work. This small wiring spec change automatically removes
~2KLoC from the generated system, including all tracing
source code modifications and configuration files needed to
enable tracing in the runtime.

Performance-Driven Design Exploration. Finally we
perform a study requiring many configure, build, and deploy
iterations. We first study the performance impact of differ-
ent choices in DSB HotelReservation and DSB SocialNet-
work [26]. Fig. 5 shows the performance impact of changes
along two dimensions: (i) the RPC framework (gRPC or
Thrift); and (ii) the size of the clientpool (relevant only for
Thrift, as gRPC multiplexes connections on a single con-
nection). We find that gRPC outperforms Thrift for both
applications and find marginal differences when varying the
clientpool size.
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Fig. 5. Blueprint enables easy performance-driven design explo-
ration.

Next, we use Blueprint to generate monolithic versions
of both applications, where all services run in a single pro-
cess and communicate directly through function calls. This
allows us to quantify the performance cost of breaking the
application down into a microservice architecture. In both
cases, we run all services on a single machine. The monolith
line in Fig. 5 shows that the monolith version outperforms
the microservice version of the application. This enables an
empirical decision for when the complexity of a microservice
architecture is justified from a performance point of view.

To generate these variants, we only needed to modify 5-10
LoC in the wiring spec, illustrating how Blueprint enables
design space exploration with minimal manual effort.

6.2 UC2: Eliciting Emergent Phenomena

Through two case-studies we demonstrate that Blueprint is
capable of generating systems for exploring emergent phe-
nomena, namely metastability failures [33] and cross-system
inconsistency [61]. We modify the Blueprint implementations
of DSB HotelReservation and DSB SocialNetwork to exhibit
these specific emergent phenomena; for readability we refer
to these simply as HotelReservation and SocialNetwork.

6.2.1 Case Study I: Metastability Failures

We adapt HotelReservation and SocialNetwork to showcase
the four different kinds of metastability failures [33]. The
required changes described below are to the wiring spec and
amount to at most 3 LoC per failure type.

Load spike trigger workload amplification (Type 1).
We modify HotelReservation to add a 500 ms timeout to
every inter-service RPC. We also modify the services to re-
try up to 10 times on error. We start with a 10 K requests/s
(Rps) workload for 60 s, then increase to 30 KRps for 30s,
and then revert to 10 KRps. Fig. 6a shows the mean and
99th percentile service latencies over time. At the 1-minute
mark, the sudden workload increase triggers the majority
of requests to time out, in turn causing more requests to be
generated due to retries. This trigger keeps the system in
a metastable state and even after decreasing the load, the
system does not recover to a stable state.

Load spike trigger capacity degradation amplification
(Type 2). To induce this type of metastability failure, the
authors [33] limited the maximum service heap size. We ex-
periment with HotelReservation’s ReservationService. As
Go offers no direct control over heap size, we instead in-
crease the garbage collection (GC) frequency by causing the
GC to trigger whenever the heap is 75% full instead of the
default 100% (for this, we set the environment variable GOGC
to 75). We run a 20 KRps workload for 10 mins; at the 5 min
mark we introduce low-level CPU contention for 30 s using
FIRM’s anomaly injector [55]. Fig. 6b shows mean service
latency over time. Here, the CPU contention acts as a trigger
by increasing the GC duration, which results in frequent
stop-the-world GC phases, causing other requests to start
timing out and generate more retries. This metastable state
also persists after the CPU contention disappears.

Capacity decreasing trigger workload amplification
(Type 3). To induce this metastability failure, we first
modify HotelReservation to have 1 s timeouts and up to 10
retries on every RPC. We run a 24 KRps workload for 2 mins.
After 1 min, we inject low-level resource contention with
FIRM’s [55] anomaly injector for 30 s to decrease available
CPU capacity. Fig. 6¢c shows the mean and 99" percentile
service latencies over time. CPU contention starting at 1 min
causes timeouts leading to retries that overload the system
and keep it in a metastable state after CPU contention disap-
pears.

Fig. 7 illustrates vulnerability for different request rates,
trigger durations, and maximum retries. At higher request
rates, even a short trigger can cause the system to move into
a metastable failure state. In contrast, at lower request rates,
short triggers only cause transient issues. Fewer retries only
minimally increase the tolerable trigger duration.

Capacity decreasing trigger capacity degradation am-
plification (Type 4). We modify SocialNetwork with an
internal 1s timeout and up to 10 retries. We run this exper-
iment in two phases. First, we fill the UserTimelineCache
with all content from the userTimelineDatabase. In the sec-
ond phase, we run a 3 KRps workload for 2 mins. At 1 min,
we flush the UserTimelineCache which then causes future
requests to query the database. Fig. 6d again shows the mean
and 99" percentile service latencies along with the observed
cache miss rate. The cache flush at 1 min overloads the data-
base and causes cascading timeouts and retries. This overload
prevents the cache from repopulating and keeps the system
in a metastable failure state.

In all cases, Blueprint enables rapid exploration of different
designs, such as adding timeouts and retries, which, in turn,
enables the reproduction and analysis of metastable failures.

6.2.2 Case Study II: Cross-System Inconsistency

We add replication scaffolding to SocialNetwork to elicit
cross-system inconsistencies. Cross-system inconsistencies
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Fig. 7. Metastability Vulnerability Analysis for HotelReservation.

occur when delays in synchronization of replicated data
stores such as databases and caches cause read requests for an
object to return incorrect results. By default SocialNetwork
has no replication, so we add replication to userTimeline-
Database and UserTimelineService, and modify the Gate-
wayService to use the replicated version of the service. These
changes only touch 4 LoC in the wiring spec.

We compare the replication-enabled SocialNetwork to the
initial Blueprint SocialNetwork. We use a 100 Rps workload
consisting of 100 % ComposePost requests. For each successful
request, we read the user timeline of the post creator after
a wait time ranging between 0s and 1 s at 100 ms intervals.
A response without the new post is a cross-system inconsis-
tency. Fig. 8 shows the measured fraction of inconsistencies
with increasing wait times for the original SocialNetwork
and the replicated version. As expected, the non-replicated
version always reads consistent results, whereas the repli-
cated version incurs a small fraction of inconsistencies [12].

Overall, this case study demonstrates how Blueprint ap-
plications are amenable to change and enable users to mod-
ify existing applications to reproduce emergent phenomena
with minimal effort.

6.3 UC3: Prototyping Improvements

In this section we evaluate how amenable Blueprint is for
supporting prototyping and evaluation of improvements in
two ways: (i) reproducing the prototyping required for a
solution performed in existing research; and (ii) prototyping
a new solution for an emergent phenomenon.

Reproducible Research. To understand how Blueprint
can aid researchers in making changes, we select a muta-
tion that was manually added by researchers to an existing

microservice application, and reproduce that mutation in
the Blueprint implementation of the application. Concretely,
Sifter [40] manually mutates the DSB Social Network appli-
cation to add X-Trace [23]. X-Trace is a distributed tracing
framework, but it does not conform to OpenTelemetry APIs
and cannot reuse the existing Jaeger instrumentation of DSB
SocialNetwork. Consequently, the authors of Sifter manually
extended DSB SocialNetwork to add X-Trace support. This
comprised 1,289 LoC changed over a 2 week period, based
on commit timestamps.

We implemented the same change in Blueprint, which re-
quired (1) extending Blueprint’s compiler to support X-Trace
(a 1-time task); and (2) enabling X-Trace for the Blueprint
SocialNetwork application. The latter required 3 LoC change
to the wiring spec of the SocialNetwork application. This
reduction occurred because the vast majority of code to sup-
port X-Trace is templatable scaffolding code which can be
easily incorporated in the compiler. Implementing X-Trace
within Blueprint’s compiler required 433 LoC.

To evaluate if Blueprint’s modifications to systems yield
the same results as the modifications to original systems, we
contacted the authors of Sifter to obtain their experiment
code and reproduced Figure 6 from the Sifter paper [40] us-
ing the Blueprint-generated SocialNetwork application. In
the original experiment, the authors recorded the loss and
sampling probability for a sequence of 1000 ComposePost
APIrequests, and at five separate instances they had inserted
anomalous requests. Similarly, in our experiment we gener-
ated anomalous requests with the Blueprint generated DSB-
SN and repeated the above experiment. In Fig. 9, the spikes
of high probability of selection correspond to the anomalous
requests. This shows that Blueprint generated systems can
reproduce the same results as the original systems.

Prototyping New Solutions. In this experiment we demon-
strate how Blueprint can help in prototyping and integrating
novel solutions in applications. We particularly focus on the
Type 1 Metastable Failure first introduced in §6.2.

To address the Type 1 Metastable Failure, we prototype a
solution based on circuit-breakers. A circuit-breaker prevents
new requests from being sent if the moving-average fail-
ure rate of requests is higher than a specified threshold. We
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implement a circuit-breaker feature and introduce it to Blue-
print’s compiler as a new type of scaffolding. This required
126 LoC. Enabling circuit breakers for the HotelReservation
application required only 2 LoC change to its wiring spec.
Fig. 10 shows how adding circuit breakers can potentially
prevent the system from going into a metastable failure state.
The circuit-breaker-enabled version of the application expe-
riences the same latency increase at t = 60, but due to the
circuit-breaker triggering, the application is able to avoid
entering a metastable failure state and returns to normal at
t ~ 90. Overall, this example demonstrates how Blueprint
can be useful in prototyping novel solutions for phenomena.

6.4 Generating Realistic Systems

We now evaluate Blueprint’s ability to generate real systems
useful for meaningful evaluation. For this we measure and
compare the performance of two of the Blueprint-generated
systems applications above to that of the original systems.

HotelReservation. We compare the performance of the
Blueprint implementation of HotelReservation to the origi-
nal DSB implementation. The original DSB HotelReservation
application is implemented in Go, enabling a direct compari-
son between it and the Blueprint-generated application. To
exercise the systems, we run a mixed workload of 60% hotels,
38% recommendations, 1% user, and 1% recommend requests.
We run the workload for different request rates ranging from
1Krps to 30 KRps for a duration of 1 min each. Fig. 11 shows
the latency-throughput profile of both systems. The Blue-
print generated system has a similar performance to the
original manually implemented system.

Fig. 9. Blueprint’s reproduction of Fig. 6 from  Fig. 10. Prototype Solution for Type 1 Metasta-
the Sifter paper [40] in SocialNetwork.

bility failure in HotelReservation.

Backend Interface Compiler
Cache 12 0
NoSQLDB 27 0
RelDB 22 0
Queue 12 0
Tracer 45 0
Deployer 3 46
RPC 11 152
HTTP 11 146

Tab. 2. Lines of Code required for adding a backend interface.

SocialNetwork. We also compare the performance of the
Blueprint implementation of SocialNetwork to the original
DSB implementation. The original DSB implementation uses
a mix of C++ and Lua with an nginx gateway web server
whereas the Blueprint implementation uses Go’s default
HTTP web server. To exercise both systems, we run a mixed
workload of 60% ReadHomeTimeline, 30% ReadUserTimeline,
and 10% ComposePost requests. We run the workload for dif-
ferent request rates ranging from 1KRps to 6 KRps for a
duration of 1 min each. Fig. 11 shows the latency-throughput
profile for both systems under the aforementioned work-
load. In this scenario, the original system outperforms the
Blueprint generated system. We attribute this to two com-
pounding factors. First, the original system is implemented
in C++ whereas the Blueprint version is in Go. Go incurs
garbage collection overhead and relies on different libraries
for many core microservices building blocks. Second, the
Blueprint implementation does not use any Redis-specific
specialized array operations. This illustrates a drawback of
Blueprint- it requires interacting with backends through
common interfaces.

Overall, these results illustrate that Blueprint can generate
microservice systems whose performance compares closely
to that of handwritten systems.

6.5 Extensibility of Blueprint

Adding backends and instantiations. Tab. 2 shows
the LoC in the interface of various Blueprint backends and



Type Instantiation Impl Compiler
Cache Redis 76 140
Cache Memcached 76 142
NoSQLDB MongoDB 288 140
RelDB MySQL 91 140
Queue RabbitMQ 50 111
Tracer Jaeger 28 145
Tracer Zipkin 28 145
Deployer Docker 74 0
Deployer Kubernetes 45 0
Deployer Ansible 439 0
RPC GRPC 673 0
RPC Thrift 636 0
HTTP Go’s net/http 271 0

Tab. 3. Lines of Code required for adding a new instantiation.

Plugin Compiler (LoC) Stdlib (LoC)
Retry 123 0
Tracing 284 45
p-Replication 52 0
ClientPools 145 55
X-Trace 364 69
CircuitBreaker 126 0
LoadBalancer 208 19

Tab. 4. Lines of code required for adding a new compiler plugin.

Tab. 3 shows the LoC for the instantiations currently avail-
able for each backend. Adding a new backend generally re-
quires <100 LoC for implementing the lightweight interface.
Adding an instantiation also requires a small amount of code
(<200 LoC) in the compiler. Each of these is a one-time effort,
that can be leveraged by subsequent Blueprint applications.

Instantiations of certain backends require more code than
others. For example, instantiations of the RPC and backends
require more code than average as these instantiations must
correctly generate the code for communicating over the net-
work, establishing connections, and running servers.

Adding new plugins. Blueprint’s modifier abstraction
allows developers to add new scaffolding. Tab. 4 shows the
plugins currently available in Blueprint and the LoC in their
implementations. Some plugins require changes only in the
Blueprint toolchain whereas others also require an additional
runtime library component. The LoC vary across features
from 46 to around 440.

Adding new plugins is harder than directly implementing
the scaffolding hard-coded within an application. Nonethe-
less, this addition is a one-time cost that amortizes the effort
of reimplementing scaffolding in all later systems.

6.6 Cost of Blueprint

Compilation time. Tab. 5 shows the time taken by Blue-
print to generate systems. Blueprint can generate small to

System Name Gen Time(s) Num Services

DSB-SN 1.172 28
DSB-MM 1.698 33
DSB-HR 1.281 18
TrainTicket 3.723 67
SockShop 0.925 14
Alibaba-TraceSet 707 2882

Tab. 5. Time taken by Blueprint for generating the system including
services, caches, databases, queues, tracers
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Fig. 12. DSB-SN cache choice exploration

medium sized system within seconds. As there are no exist-
ing large open-source microservice systems, we generated a
large-scale microservice application using the Alibaba ser-
vice topology in the Alibaba trace dataset [44]. For this, we
omitted the caches and databases and only focused on state-
less services. In total, the resulting workflow and wiring
spec had 2.8K service instances. To generate a variant imple-
mentation, Blueprint took around 12 minutes. Overall, the
compilation time is proportional to the number of service
instances in the wiring spec and the density of the service
topology. These results demonstrate that Blueprint enables
researchers and practitioners to quickly (re-)compile appli-
cations, thus supporting rapid Configure, Build, and Deploy
cycles. These results may be further improved through com-
piler optimizations and incremental compilation.

Cost of abstractions.  For each type of backend supported
by Blueprint, services interact with the backend through a
generalized interface. The interface is selected such that
backend instances can be opaquely reconfigured. Yet many
backends do provide broader interfaces with specialized op-
erations that are more efficient for certain workloads. Blue-
print’s approach discourages services from using such oper-
ations, in the interest of reconfiguration.

To demonstrate the impact of using more general but less
efficient APIs, we implement an extended Cache interface
that provides access to Redis’ specialized cache operations.
We use this extended interface in the SocialNetwork appli-
cation, we execute a 100% ReadHomeTimeline workload for
1 minute for request rates ranging from 1 KRps to 6 KRps.
With the extended interface, the application observes a 33%
increase in throughput as shown in Fig. 12.



7 Discussion

Debugging. Debugging generated code and the workflow
specification can be a challenging task. To aid developers in
debugging workflow specification code, Blueprint provides
default implementations of the various components called
null implementations. These implementations provide a basic
interface against which the core application specification
can be tested without worrying about the deployment of the
system. These implementations are attached to the workflow
specification in the wiring spec and can be iteratively re-
placed with the real choices once the developer is confident
in the correctness of their application code.

Language Heterogeneity. Usually, microservice systems
contain services implemented in different languages. Cur-
rently, Blueprint generates services only in Go. Generating
services in other languages is purely an implementation chal-
lenge and we believe that the current design can be extended
to generate code in other languages. This would require
compiler plugins to support generation of scaffolding in mul-
tiple languages in order to correctly mix code of different
languages in an application.

Generating Production Systems. Blueprint targets mi-
croservice experimentation and prototyping use cases, rather
than generating production-ready microservice applications.
It remains an open question whether Blueprint is a suitable
toolchain for developing production-ready microservice ap-
plications. Currently, Blueprint’s approach stands at odds
with the microservices architectural approach: microservices
are typically developed by highly distributed teams oper-
ating independently; yet Blueprint imposes a centralized
configuration and deployment step through its wiring spec.
We are currently exploring approaches to decomposing and
distributing the wiring spec. A further concern is the cost
of Blueprint’s abstractions for backends, which might be
too high a price to pay for production systems. However,
we believe that Blueprint could be used in production to
quickly home in on a concrete set of choices that satisfies
the developer’s requirements. The Blueprint-generated sys-
tem could then further be fine-tuned manually to obtain a
production-grade system.

8 Related Work

Microservice benchmark suites have gained considerable
popularity in recent years [26, 66, 71, 76]. Each system cor-
responds to only one concrete point in the design space and
as they were not designed to be configurable, they are in-
adequate for tasks that would require exploring the design
space of microservices.

Several existing tools support generation of microservice
systems by providing a DSL or some other programming
language [4, 21, 27, 38, 49, 53, 56-59, 62-64, 67, 68, 73].

However, the tools are designed for one-shot generation
of microservices and select a single dimension to provide
flexibility. The most prominent example is Google’s Ser-
viceWeaver [27], which provides flexibility along the deploy-
ment dimension allowing users of the tool to deploy the same
application as a suite of microservices or as a monolithic ap-
plication. However, like the other tools, ServiceWeaver is a
poor fit CBD use cases that require modifying the application
along dimensions other than the deployment dimension.

Some existing tools, such as SpringBoot [65] or Dapr [1]
aid in developing microservice systems by separating out
reusable infrastructure components from the core implemen-
tation of the application, allowing users to select infrastruc-
ture building blocks that can be applied to an application.
However, the SpringBoot framework makes binding choices
along the deployment and communication dimensions of
the microservice design space making SpringBoot a poor
fit for CBD use cases. Unlike the SpringBoot framework,
Dapr allows users to switch between the deployment and
communication dimensions but the user must change them
manually resulting in high manual effort.

Two of the key features that enables Blueprint to quickly
reconfigure applications are the notions of reusability and
dependencies. First, the idea of reusability has been inspired
from the The Flux OSKit [24]. Similar to Flux OSKit’s suite of
reusable OS components, Blueprint also uses commonly used
microservice libraries and components as reusable building
blocks for microservice applications. In contrast, Blueprint
does not require glue code to be handwritten for each com-
ponent for each new application, instead relying on its com-
piler abstractions and code generation to correctly handle
composition of components. Second, Blueprint uses Depen-
dency Injection [54] to correctly generate applications by
not allowing instantiation of dependent components in the
workflow specification of applications. The dependencies of
any given service in a Blueprint application are generated at
compilation time.

9 Conclusion

We have introduced Blueprint, a toolchain for developing
highly reconfigurable microservice applications. We have
demonstrated Blueprint for several use cases that involve
configuring, building, and deploying variants of microser-
vice applications with modified designs. Compared to exist-
ing benchmark applications, Blueprint substantially eases
development and reconfiguration by providing a strong sep-
aration of concerns between an application’s workflow, scaf-
folding infrastructure, and implementation choices. Blue-
print is open-source, and we hope that its adoption will
make it easier for future work to understand and improve
the performance and correctness guarantees of microser-
vice systems. Blueprint is available at https://gitlab.mpi-
sws.org/cld/blueprint/blueprint-compiler.


https://gitlab.mpi-sws.org/cld/blueprint/blueprint-compiler
https://gitlab.mpi-sws.org/cld/blueprint/blueprint-compiler
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A Appendix: Hierarchical Code Generation

In this section, we expand upon the source code generation
process of Blueprint’s toolchain, Blueprint. Recall that the
service instance of the ComposePostService in the IR was
modified with two modifiers - ZipkinTracer and GRPC. As a
result, Blueprint generates two different classes that wrap
around the workflow specification from Fig. 1. Fig. 13 shows
the generated code. Blueprint generates code in a hierarchi-
cal fashion. As tracing must happen before the start of the
actual processing of the function call, Blueprint wraps the
workflow specification of the service with a generated object
that starts a new span every before calling into the func-
tion. Subsequently, as the next level in the hierarchy is the
GRPC node, Blueprint wraps the tracing code with GRPC-
specific code and creates a function to start the GRPC server.
The next node in the hierarchy, according to the IR, is the
process node. Fig. 14 shows the process code generated for
the service. In lines 2-15, the client objects are constructed
and then passed as parameters to the constructor for the
ComposePostService defined in Fig. 1. The tracer and grpc
objects for the service are then constructed and the server
is started. This hierarchical code generation pattern repeats
for every service instance defined in the wiring specification
of the application.

B Phenomena, Systems Usage, &
Modifications

B.1 Known Emergent Phenomena

In this section, we list and define known phenomena. While,
our list of phenomena is by no means exhaustive, the list is
detailed enough to provide an insight into the kinds of phe-
nomena exhibited by microservice systems and what are the
requirements for a system to exhibit phenomena. We hope
that researchers find this information useful while using
Blueprint to modify systems to understand this phenomena.

Retry storm metastable failure. in which a system is
pushed into a prolonged failure state due to repeated RPC
retries and timeouts [7, 15, 33]. Retry storms arise when
the timeout configuration of services are too low, causing
RPCs to to be aborted part-way through execution, wasting
work. The system must be modified such that each service
has timeouts as well as retry mechanisms where a service
generates a retry for a request on failure.

Load Spike Resource Contention metastable failure.
This is type 2 of the four types of metastability failures [33].
In this phenomenon, some bookkeeping function competes
with the actual job for processor resources. For example, a
sudden spike in the load could trigger frequent Garbage Col-
lection(GC) cycles which compete with actual job processing
for processor resources leading to a build up of unprocessed
requests leading to a cascade of backed up requests. For a
system to exhibit this phenomenon, the system must have

some kind of an auxiliary bookkeeping subroutine — 100%
sampling for traces, garbage collection.

Low-Level Resource Contention metastable failure. This

is type 3 of the four types of metastability failures [33]. In
this phenomenon, low-level resource contention outside the
scope of the application causes the system to slow down.
For example, co-location of two processor intensive services
might cause those services to drastically impact each other.
For a system to exhibit this phenomenon, the system should
additionally have timeouts and retries to trigger a cascading
effect so that the system stays in a metastable state.

Low-Level Resource Contention QoS violations.  Simi-
lar to the previous phenomenon, this phenomenon manifests
as QoS (Quality of Service) violations caused due to some
low-level resource contention. However, in this phenome-
non, the violations only last a short duration and the system
does not enter into a metastable state. For a system to exhibit
this phenomenon, the system needs some kind of low-level
resource contention that violates a QoS metric. An example
would be FIRM’s anomaly injector [55] that injects low level
anomalies to cause QoS violations.

Capacity Degradation Trigger Capacity Degradation
Amplification metastable failure, This is type 4 of the
four types of metastability failures [33]. In this phenomenon,
a trigger decreases the capacity of the system to process
requests which causes failures leading to the capacity of
the system never reverting back to the normal state. For
example, a system with a cache in front of a database can
process 2Krps but if the cache fails then the capacity of
the system to process requests decreases. This can cause
failures and prevent the cache from ever getting filled back
and can overload the database. For a system to exhibit this
phenomena, the system needs two different paths - a fast
path and a slow path and timeouts and retries. Momentary
failure of the fast path could lead to timeouts causing a retry
storm and putting the system into a metastable failure state.

Cascading QoS violations in which application quality of
service deteriorates due to increased latency and/or failures
in downstream services [52, 75]. This is part of a broader class
of cascading effects where failures in one component drasti-
cally combine with error-handling and availability mecha-
nisms in another component to ultimately bring down the
system [70]. For a system to exhibit this phenomenon, there
must be a chain of services of significant length as well as
timeouts and retries.

QoS violations from repeated expensive I/0. In this
phenomenon, repeated execution of expensive I/O can lead
to QoS violations. For example, repeatedly fetching the same
information from a resource that is expensive to access, in
terms of I/O overhead or latency and not caching the data
can cause QoS violations [9]. Another example would be
services not re-using clients while making requests to other



type ComposePostTracer struct {
service *ComposePostImpl
tracer blueprint.Tracer
service_name string

}

P N B N T

func NewComposePostTracer(service *ComposePostImpl,tracer blueprint.
Tracer,service_name string) *ComposePostTracer {

return &ComposePostTracer{service: service, tracer: tracer,
service_name: service_name}

=)

91}

11| func (t *ComposePostTracer) ComposePost(ctx context.Context, reqID
int64, username string, userID int64, text string, mediaIDs []
int64, mediaTypes []string, post_type services.PostType,
zipkinTracer_trace_ctx string) error {

12| if zipkinTracer_trace_ctx != "" {

13 span_ctx_config, _ := blueprint.GetSpanContext(
zipkinTracer_trace_ctx)

14 span_ctx := trace.NewSpanContext(span_ctx_config)

15 ctx = trace.ContextWithRemoteSpanContext(ctx, span_ctx)

16| }

17| tp, - := t.tracer.GetTracerProvider()

18| tr := tp.Tracer(t.service_name)

19| ctx, span := tr.Start(ctx, "ComposePost")

20| defer span.End()

21| err := t.service.ComposePost(ctx, reqID, username, userID, text,
mediaIDs, mediaTypes, post_type)

22| if err != nil {

23 span.RecordError(err)

24| 3}
25| return err
26|}

27

(a) Generated code for adding tracing to ComposePostService

1| type ComposePostGRPC struct {

2| service xComposePostTracer

3| socialnetwork.UnimplementedComposePostServiceImplServer
41}

5

6| func NewComposePostGRPC(old_handler xComposePostServiceImpl) error {
7| addr := os.Getenv("composePostService ADDRESS")

8| port := os.Getenv("composePostService PORT")

9| if addr == "" || port == "" {

10 return errors.New("Address or Port were not set")

11| }

12| 1lis, err := net.Listen("tcp", addr + ":" + port)

13| if err != nil {

14 return err

15| }

16| handler := &ComposePostGRPC{service:old_handler}

17| grpcServer := grpc.NewServer()

18| socialnetwork.RegisterComposePostServiceImplServer(grpcServer,

handler)
19| return grpcServer.Serve(lis)
20
21|}
22

23| func (rpchandler *ComposePostGRPC) ComposePost(ctx context.Context,
request xsocialnetwork.
ComposePostServiceImpl_ComposePostRequest) (xsocialnetwork.
BaseRPCResponse, error) {

24| var arg7 services.PostType

25| copier.Copy(&arg7,request.PostType)

26| ret0 := rpchandler.service.ComposePost(ctx, request.ReqID, request.
Username, request.UserID, request.Text, request.MedialDs, request.
MediaTypes,arg7, request.ZipkinTraceCtx)

27| response := &socialnetwork.BaseRPCResponse{}
28| return response,ret0

291}

30

(b) Generated code for runnin ComposePostService as a GRPC server

Fig. 13. Generated Server side code for the ComposePostService defined in §4

1| func RuncomposePostService() error {

2 zipkin := NewZipkinTracer()

3 userserviceimplrpcclient_netclient, err :=
NewUserServiceGRPCClient ()

4 if err !'= nil {

5 return err

6 }

7 userservicetracerclient := NewUserServiceZipkinClient(zipkin,
userserviceimplrpcclient_netclient)

8 userserviceimplclient := NewUserServiceClient(
userservicetracerclient)

9

10| poststorageserviceimplrpcclient_netclient, err:=
NewPostStorageServiceGRPCClient ()

11| if err != nil{

12 return err

13 }

14| poststorageserviceimpltracer :=
NewPostStorageServiceZipkinClient(zipkin,
poststorageserviceimplrpcclient_netclient)

15| poststorageserviceimplclient := NewPostStorageServiceClient(
poststorageserviceimpltracer)

16| spec_handler := NewComposePostImpl(poststorageserviceimplclient,
userserviceimplclient)

17 composeposttracer := NewComposePostZipkin(spec_handler)

18| err_new := NewComposePostServiceImplHandler(composeposttracer)
19| if err_new != nil {

20 return err_new

21] }

22| return nil

23|}

Fig. 14. Generated Server side main function for the ComposePost-
Service defined in §4

services and re-establishing a connection on every call. For a
system to exhibit this phenomenon, the system must perform

an expensive operation in a repeated fashion either in the
workflow spec or in the scaffolding.

Reduced Availability due to saturation. Services can
get saturated and overwhelmed when placed under signif-
icant load. However, even in the absence of retry storms,
a service can get oversaturated. In this phenomenon, only
one service is impacted while the rest of the system remains
healthy. This can happen in multiple scenarios. One such sce-
nario is if the service has a high fan in number i.e. multiple
services call into this service. Another scenario is when one
big request is broken down into multiple smaller requests
which can fill up queues at the called service [8]. DSB-SN
v1 suffered from this exact phenomenon via a combination
of the above scenarios where multiple services called Com-
posePostService and the items to ComposePostCache were
broken down into multiple pieces and accessed via multiple
set/get requests. The application was changed to remove this
phenomenon [19].

Reduced Availability due to QoS violation prevention
schemes. In this phenomenon, application availability
is impacted by mechanisms such as circuit breakers [60] in
place to prevent QoS violations at others services. This incurs
a high error rate or high end-to-end latencies to prevent
QoS violations at others services. For a system to exhibit
this phenomenon, the system must have QoS prevention
mechanisms in different parts of the system.



Cross-System Inconsistency. This phenomenon occurs
when requests write to multiple eventually-consistent data-
stores, establishing an ordering for read operations across
those datastores. Each datastore is individually consistent,
yet readers may experience inconsistent reads, such as a
notification arriving before post content has finished repli-
cating [3]. For a system to exhibit this phenomenon, the sys-
tem must at least have replicated datastores. For a stronger
manifestation of this phenomenon, geo-replication is recom-
mended [42].

User-View Data Inconsistency. This phenomenon is
a less stricter version of Cross-System Inconsistency. For
a Cross-System Inconsistency, the replicated datastore is
inconsistent from the viewpoint of the system itself such
that a value that was committed in the datastore has not
propagated to all replicas. In contrast, for a user-view data
inconsistency, the value does not have to be committed to
a datastore; rather, it must seem to be committed from the
user but the update has not reached all parts of the system
due to asynchrony [41]. Prime example of this phenomenon
is observed almost on a daily basis by users of social-media
applications where the user gets a notification but clicking
on the notification does not show the update simply because
the update is being applied asynchronously as the data pol-
icy is of eventual consistency. The key to replicating this
phenomenon is to have asynchronous updates to datastores
leading to inconsistent view of the system from the point
of view of the user. This phenomenon falls under the larger
class of phenomena related to Data Integrity violations [14].

QoS violations from excessive repeated calls. In this
phenomenon, repeatedly contacting a datastore or a service
for the same piece of information can overwhelm the down-
stream service resulting into a cascading failure. For a system
to exhibit this phenomenon, it must make repeated calls for
the same data and must not use a cache [9].

QoS violations from excessive data demand. This is
the dual of the previous phenomenon. In this phenomenon,
contacting a service for more data than required can cause
the downstream service to get blocked as it now needs to
process and return a large amount of data. This can also
create contention on the network and bog down concur-
rent requests. For a system to exhibit this phenomenon, the
workflow spec must have a service that asks for excessive
data.

Performance Degradation due to Disruptive neighbours.

In this phenomenon, the performance of one application/-
tenant is drastically impacted by the co-located application/-
tenant due to the co-tenant using a disproprtionate amount
of resources [10, 45]. This scenario only happens in situta-
tions when multiple applications are co-located on the same
node and compete for resources.

The Laser of Death. In this phenomenon, the availability
of the system is hampered by a load balancer overloading
replicas of a service [51]. Specifically, a load balancer per-
forms periodic health checks to find a healthy subset of
replicas and routes requests to this healthy subset. If one of
the replicas gets overloaded then its health check would fail
which would cause the load balancer to stop routing requests
to that replica. This in turn can overload the new subset of
healthy replicas as each healthy replica now has to handle
an increasing workload. Essentially, the load balancer begins
acting as a Laser of Death by overloading healthy replicas
due to health checks. This scenario only happens in appli-
cations with replicated service instances that are fronted by
a load balancer making routing decisions based on health
checks of instances.

The Killer Health Check. In this phenomenon, health
check based instance replacement automation might cause
warmed up hosts to get replaced which can prevent the ap-
plication from servicing requests at the same rate [51]. The
underlying cause of this is the fact that the health check sig-
nal does not actually specify if a problem is instance-specific.
The problem might exist in some downstream services or
might be a problem that is affecting all services. This sce-
nario can only happen in applications with replicated service
instances that allow for automatic creation and deletion of
instances based on health check signals.

Incorrect Microservice Granularity.  This is a phenom-
enon pertinent exclusively to the hierarchy and grouping
of microservices. Mega Microservices can suffer the same
problems that monolith applications suffer whereas Nano
Microservices can incur a high development and mainte-
nance and can lead to cycles [69]. The correct granularity of
microservices has also been of interest to practitioners. This
interest led to Uber switching to a less granular microservice
architecture in which microservices are grouped together
into domains [167].

Multi-version Errors. This is a phenomenon in which
multiple versions of the same microservice co-exist and are
deployed at the same time [69]. This can cause a lot of errors
if the requests meant for service:vl end up at service:v2.
For a multi-version error to occur, the system could have
service discovery mechanisms that link callers to incorrect
version due to stale information. Another way of exhibiting
this phenomena in this system is to have the same service
instance simultaneously service requests from both versions
with clients making calls to version 1 with data for version
2 of the function.

B.2 Existing Use of Microservice Systems

To understand how microservice systems are used by re-
searchers, we conducted a literature survey to analyze which
systems were popular. To find the necessary papers, we



System [ Count [ Papers
DSB-SN [26] 51
[34, 40, 52, 55, 82, 84, 85, 95, 102, 103, 107, 108, 126, 129, 133, 149, 156, 157, 160, 162, 191, 196, 201-203, 206,
209, 228, 252, 270, 273, 276—278, 285-287, 304, 322, 323, 334, 351, 353, 371, 374-377]
DSB-MM [26] 18
[55, 103, 107, 108, 111, 131, 133, 156, 162, 209, 225, 252, 273, 286, 287, 305, 322, 337]
DSB-HR [26] 17
[55, 103, 126, 156, 162, 188-190, 205, 209, 217, 246, 302, 314, 375, 384, 388]
DSB-Swarm [26] 1
[163]
pSuite [66] 2
[253, 328]
TrainTicket [76] 52
[34, 55, 77, 81, 88, 95, 109, 110, 113, 127, 130, 131, 134, 137, 156, 177, 182, 188—192, 197, 203, 234, 235, 237,
239, 246, 247, 257, 296, 297, 304, 305, 311, 322, 329, 338, 339, 347-349, 351, 370, 378-381]
SockShop [47] 96
[83, 86, 87,91, 93, 100, 105, 106, 114, 115,117,119, 121, 124, 134, 135, 139, 141, 146, 150, 155, 171, 172, 176, 178—
183, 188-190, 204, 207-211, 215, 216, 218-222, 229-232, 237, 244, 246, 247, 249, 250, 254, 256, 258-262, 268,
271, 280, 281, 283, 286, 292, 294-296, 300, 301, 311, 313, 319-321, 331-333, 335, 336, 340, 343, 350, 354—
357, 360-362, 365, 372, 380, 383]
AcmeAir [2] 26
[79, 96, 97, 104, 125, 136, 148, 173, 174, 195, 196, 204, 214, 255, 269, 289, 293, 310, 311, 330, 341, 342, 358, 363,
364]
TeaStore [71] 32
[92, 112, 129, 132, 143, 145-147, 154, 166, 168, 175-177, 184, 185, 187, 194, 198, 198, 213, 233, 248, 286, 303,
306, 307, 317, 318, 326, 344, 359]
HipsterShop/OnlineBoutique [28] 34
[52,94, 95,101, 116, 118, 120, 122, 123, 158, 159, 170, 186, 212, 217, 227, 231, 232, 237, 245, 250, 267, 290, 296—
299, 302, 321, 366-369, 384]
AliBaba [44] 2
[242, 373]
Stan’s RobotShop [72] 9
[52, 98, 123, 206, 236, 259, 266—268]
BookInfo [36] 12
[52, 80, 90, 98, 123, 231, 232, 236, 236, 243, 263, 296, 312]
eShopOnContainer [140] 13
[153, 164, 165, 200, 223, 247, 260, 265-268, 315, 324, 346]
LakeSideMutual [275] 10
[41, 64, 144, 164, 165, 266, 282, 315, 316, 385-387]
eShoppers [308] 3
[127, 128, 339]
PitStop [142] 2
[232, 264]
Lab Insurances Portal [6] 2
[206, 240]
Overleaf [272] 1
[206]
Retwis [288] 3
[163, 217, 309]

Tab. 6. Microservice systems used in the literature.

started with a list of seed microservice systems (DeathStar-
Bench [26] and TrainTicket [76]) and shortlisted the papers
citing the seed systems that we found using Google Scholar.
During the analysis of the shortlisted papers, if we found a
previously unseen system used by the paper then we modi-
fied our list of systems to include the newly found system.
When we added a new system, we increased the shortlisted
papers with the papers citing the new system. Some of the
systems did not have an accompanying research paper so
it was not straightforward to find the papers using those
systems via Google Scholar. To overcome this, we used the
url of the system as a query to Google Scholar search to find
candidate papers.

To decide if a paper used a particular system, we analyzed
the paper’s evaluation section. If the paper performed at least
one experiment using a given system, the paper was deemed
to have used the system. In total, we found 290 research
papers that altogether used 20 different systems. Six of the
twenty systems, DSB-SN, DSB-HR, DSB-Swarm, DSB-MM,
TrainTicket, and TeaStore, were described by the authors
of the systems as microservice benchmarks, eleven systems
were demonstration apps by a specific framework or a li-
brary to showcase some feature of their library or feature in
the context of microservice systems, two systems were con-
structed based on public trace datasets, and the final system,



Overleaf [272] was the sole microservice system that is cur-
rently deployed and used publicly. While our survey found 20
systems that are used by researchers in the literature, there
exist a lot more open source microservice systems [284].

Tab. 6 shows the breakdown of papers found in the survey
categorized by the open-source system they used. Out of all
the used systems, SockShop [47] was used by the most num-
ber of papers despite its small number of services. We found
it surprising that SockShop was used in more papers than any
of the systems labeled as ‘microservice benchmarks’. We be-
lieve that this is probably due to the fact that the system has
been around for a longer period of time as compared to the
benchmarks and is enabled with a plethora of orchestration
and monitoring features that are desirable to researchers.
This indicates that researchers want systems that have a
variety of features.

While researchers use microservice systems to analyze
and solve specific emergent phenomena, other use-cases
of microservices include using them as sources of log and
trace data, or as individual datapoints in a larger dataset of
microservice systems for source code analysis. The use-cases
of microservice systems are diverse and require a diverse set
of systems that vary across a variety of dimensions. Thus, it is
impossible that any single implementation of a microservice
system can be used as the ideal benchmark system for all
possible research scenarios.

l System [ Total Forks [ Forks w/ Modifications ]
DeathStarBench 240 85
TrainTicket 130 25
TeaStore 96 36

Tab. 7. Modified Forks for each Microservice Benchmark

B.3 Modifications to open-source systems

In addition to the literature survey, we also analyzed forks
of popular microservice systems to figure out what modifica-
tions were being made to the systems. We chose to anlayse
the forks of the systems labeled as microservice benchmarks
as these systems were designed as microservice benchmarks
and are the ideal targets for researchers. We analyzed 240
forks of DeathStarBench, 130 forks of TrainTicket, and 96
forks of TrainTicket. Out of the total 464 forks, 146 forks
made modifications to the benchmark systems. Tab. 7 shows
the breakdown of the modified forks by system.

We found multiple different types of modifications made
to the systems. The most common modification to systems
were to either enable or disable tracing and other monitor-
ing tools. This included switching on/off tracing, metrics,
and logging. Another common modification was to gener-
ate the manifest files for deploying systems on a specific
framework such as Kubernetes or OpenShift. There were
multiple forks that modified systems such that they exhib-
ited a specific emergent phenomena. We found one fork

of DeathStarBench that modified the system to induce a
metatstable failure [22, 152] into the system and another
fork that modified the DeathStarBench system to include
geo-replication to analyze cross-system inconsistencies [42].
Modifications were not restricted to emergent phenomena.
Some other forks modified the systems to understand the
impact of various of design choices- for eg, thrift vs grpc [99],
energy efficiency of monitoring tools [20], among others. We
also found a fork that modified TeaStore to study, reproduce,
and exploit CVE-2021-44228 [291]. Researchers have also
modified systems to support their experiments [5, 20, 74].

In conclusion, researchers modify systems for one main
reason that can manifest as different types of modifications.
We found that the reason for modifications was to include
some feature that is absent from the system but is necessary
for research.
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