
Observability Hints forQuantum Network Applications
Vaastav Anand, Antoine Kaufmann

Max Planck Institute for Software Systems

ABSTRACT
Quantum internet promises to enable a more powerful class of
applications than those possible just with classical communication.
Due to the heterogeneity of the quantum network, the continuous
interaction between classical and quantum components, as well
as the non-deterministic and probabilistic nature of quantum net-
work applications, it is imperative that we develop mechanisms to
track the performance of quantum network systems. In this paper,
we argue for the inclusion of classical observability techniques as
first class citizens in the design of the infrastructure powering the
quantum system. We discuss the different challenges associated for
enabling observability and discuss potential ways in which we can
enable observability for quantum network systems.

1 MOTIVATION
Quantum Internet and quantum networks are slated to play an
important role in the future of cloud and distributed computing by
enabling a new class of networked applications that are impossible
to be implemented using solely classical communication [13, 18].
Common examples of such applications include Quantum Blind
Computation [2, 7], Delegated Quantum Computation [3], Quan-
tum Key Distribution [14], among others. Despite the excitement
surrounding these applications, demonstrations of these applica-
tions have been limited to ad-hoc software with quantum hardware
specialized for executing specific tasks.

While quantum networked applications remain in its nascency,
developers deeply care about the performance and efficacy of these
applications. This need will only be further exacerbated in a true
realization of a quantum internet, where the number of nodes
communicating would be far greater than just two. Thus, the key
requirement for effectively doing performance analysis is to have
visibility into the internals of the system and to effectively track
the execution across component boundaries.

Traditionally, observability in classical distributed systems pro-
vides insight into the performance and execution of the system
that can then be used by developers to understand system behavior,
isolate root causes of issues and incidents, and for optimizing the
performance of the system. To provide this insight, observability
makes use of its 3 core pillars — logs, metrics, and traces. Logs
provide detailed information about the execution at the granularity
of events deemed interesting by developers. Metrics continuously
track important Service Level Objectives (SLOs) such as latency
and throughput, allowing developers to set automated alerts and
monitors for the key performance indicators of the system. Traces
provide a cross-component detailed view of the execution at request-
level granularity that span multiple nodes and components.

We propose that to enable performance analysis of quantum
networked applications, observability must be treated as a first
class citizen in the design and implementations of operating sys-
tems enabling quantum networked applications. While we dis-
cuss challenges associated with enabling observability in quantum

Node A Node B

CNPU CNPU

QNPU QNPU

Quantum Device Quantum Device

Observability Storage

Obs. Unit Obs. Unit
Context Propagation

Obs. Unit Obs. Unit

Classical Channel

Quantum Channel

QDevice IfaceQDevice Iface

NetQASM Iface NetQASM Iface

Figure 1: Augmented QNodeOS with observability units

networked systems, we believe these challenges are also applica-
ble to quantum operating systems [9, 10] designed for the public
cloud [1, 11, 12, 16]. We present a mock-up of a potential design
of a dedicated observability unit in the context of the QNodeOS
operating system [6] and discuss future steps associated with in-
corporating observability into quantum networked applications.

2 CHALLENGES
However, gaining visibility in quantum network applications is
challenging for many reasons. First, these applications are inher-
ently heterogeneous. They are composed of mixed classical and
quantum tasks that depend on each other in different ways and
often require both classical communication as well as quantum com-
munication. Thus, we need to track observability not only across
network boundaries but also across processor boundaries. Second,
these applications are probabilistic and non-deterministic. The suc-
cess of the application is often highly dependent on the quality and
the fidelity of the entangled states generated. Thus, these applica-
tions may require many different executions to gain a meaningful
result. As a result, more specialized metrics need to be calculated
and tracked on a per-application basis. Third, there are a lot of
sources of error that can degrade the performance of the system.
These may be decoherence errors that cause the quantum state to
decohere or collapse as well as errors in application of quantum
gates or errors in performing measurements. Thus, the different
sources must be accounted for and tracked during the execution
which requires obtaining deep low-level visibility. Fourth, gaining
insight into the quantum states is a difficult and resource consuming
process. For example, performing quantum state tomography for
even a two- qubit state requires performing measurements with dif-
ferent settings to get the full probability density matrix of the state.
Thus, we may need to redesign observability techniques to make
them more efficiently applicable for quantum networked systems.

3 OBSERVABILITY IN THE QUANTUM AGE
To overcome the challenges, we need to design dedicated observ-
ability units that can track the execution across heterogeneous



Conference’17, July 2017, Washington, DC, USA
Vaastav Anand, Antoine Kaufmann

Max Planck Institute for Software Systems

components and collect relevant metrics associated with the appli-
cations. We present our vision of native observability support in
quantum networked applications within the context of the design
of QNodeOS [6], the first functional general purpose operating sys-
tem designed for quantum network applications. The observability
augmented version of QNodeOS is shown in Figure 1. The original
QNodeOS design consists of three parts, (i) a Classical Network
Processing Unit (CNPU) that handles the execution of the classical
part of the user program, (ii) a Quantum Network Processing Unit
(QNPU) that executes the quantum part of the user program and
manages the underlying resources provided by the quantum device
- namely entanglement and qubits, and (iii) a quantum device that
provides the quantum resources. We augment the design by modi-
fying the CNPU and QNPU with dedicated observability units that
are responsible for providing the three pillars of observability.

3.1 Metrics
For quantum network systems, there are a variety of possible met-
rics developers might need to track. There are two different classes
of metrics that need to be measured and monitored - (i) classical
metrics, and (ii) quantum metrics.
Classical Metrics. Classical metrics represent the class of metrics
that can be measured using classical techniques and do not require
any quantum measurements. Common examples of these metrics
include end-to-end latency, server throughput, resource utilization,
and power usage. Diagnosing issues requires collecting classical
metrics about the quantum aspects of the system. For latency, the
developers might additionally want to measure the latency (or wait-
ing time) for generating 1 entangled pair of qubits. For throughput,
possible measures include throughput of the number of qubits
generated by a quantum device, throughput for the number of en-
tangled pairs generated per second, throughput of the total number
of successful entanglement swapping (or teleportation) attempts.
For utilization, a sensible metric might be the number of physical
qubits utilized per second or the number of logical qubits utilized
per second. Utilization metrics might also include metrics about
the link utilization of the classical and quantum communication
channels between two neighboring nodes. These metrics would
need to be tracked by both the CNPU and QNPU.
QuantumMetrics. Quantum metrics are metrics pertaining to the
quantum state and require quantum solutions. For example, the
most popular example of a quantum metric is fidelity. In a quan-
tum network application, a developer might want to track different
fidelity metrics. Fidelity metrics could include the fidelity of the
initial states, fidelity of the entangled states, or fidelity of the final
computation result. Other quantum metrics include metrics that
measure the quality of the entanglement. For example, entangle-
ment entropy [4] measures the quality of the entanglement of a
pure state. Some quantum applications even have pre-requisites
on the quality of entanglement before execution can happen. For
example, the E91 protocol [8] for entanglement-based quantum key
distribution requires that the prepared entangled state be a state
such that it violates the CHSH inequality [5]. As not all entangled
states violate the inequality, it becomes imperative that the quality
of the entanglement must be measured. These metrics would need
to be tracked by the QNPU.

A key difference between classical and quantum metrics is that
quantum metrics are often second order metrics. This is because,
to calculate a single value for these metrics, we require multiple
measurements, sometimes in the order of thousands, as is the case
when using quantum tomography [17] for calculating the fidelity of
the entangled state. Thus, we also want to track metrics about these
quantum metrics, such as number of measurements per calculation
of the metric and resources spent calculating the metric. Moreover,
we might need to use sampling strategies to overcome the high
resource requirements of measuring quantum metrics.

3.2 Tracking Execution
Traces.Traditionally, traces track the execution of a request through
the different components of the system. In classic settings, tracing
requires propagating a request-specific context across the various
component boundaries often demarcated by individual deployment
units [15]. However, for quantum network systems, we are op-
erating in a heterogeneous setting with two different processor
components providing different capabilities. Thus,to obtain com-
plete executions, we need to now propagate the execution context
across both the processor boundaries in addition to the network
boundaries to get a full picture of the execution of the system.

To correctly provide tracing capabilities, we propose modifying
the CNPU and QNPU design in two ways. First, the CNPU of one
node must propagate the context to the CNPU of the other node
to establish context propagation over the classical communication
channel between the two CNPUs. Second, the execution context
must be propagated through the CNPU-QNPU channel which can
then further be propagated and attached to the communication
with the QNPU of a neighboring node. Propagating the context into
the QNPU allows attaching information about the local quantum
execution to the trace of the application as well as ensuring that
all possible entanglement generation requests and communication
with neighboring nodes is correctly attributed to the application.
This context propagation is important, as it allows us to correctly
attribute usage of quantum resources for different applications
especially if there are multiple applications executing over the
quantum network at the same time.
Logs. Traditionally, logs capture discrete events within the system.
For quantum network systems, there are two distinct sources of
events that the user might want to capture – (i) events from CNPU,
i.e. the execution of the classical part of the program, and (ii) events
from QNPU, i.e. the execution of the quantum part of the program.
However, not all events in the two processor units might be specific
to a given user program or application. Some of them might simply
be housekeeping events for the specific processing unit. Thus, both
types of events need to be tracked as well as easily differentiated.

4 CALL-TO-ACTION
The lack of visibility into the performance and execution of quan-
tum applications has the potential to completely block the quantum
internet revolution. We believe we have only scratched the surface
of the power that observability techniques can provide in the design
and maintenance of quantum network systems. We argue that the
quantum systems community should work together in developing
solutions and techniques that can truly unleash the full power of



Observability Hints for Quantum Network Applications Conference’17, July 2017, Washington, DC, USA

observability and help in the fulfillment of the immense promise of
quantum internet.

REFERENCES
[1] Amazon. Amazon braket. Accessed August 2024 from https://aws.amazon.com/

braket/.
[2] Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F Fitzsimons, Anton

Zeilinger, and Philip Walther. Demonstration of blind quantum computing.
science, 335(6066):303–308, 2012.

[3] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation. In 2009 50th annual IEEE symposium on foundations of computer
science, pages 517–526. IEEE, 2009.

[4] Pasquale Calabrese and John Cardy. Entanglement entropy and quantum field
theory. Journal of statistical mechanics: theory and experiment, 2004(06):P06002,
2004.

[5] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Pro-
posed experiment to test local hidden-variable theories. Physical review letters,
23(15):880, 1969.

[6] Carlo Delle Donne, Mariagrazia Iuliano, Bart van der Vecht, Guilherme Ma-
ciel Ferreira, Hana Jirovská, Thom van der Steenhoven, Axel Dahlberg, Matt
Skrzypczyk, Dario Fioretto, Markus Teller, et al. Design and demonstration of an
operating system for executing applications on quantum network nodes. arXiv
preprint arXiv:2407.18306, 2024.

[7] P Drmota, DP Nadlinger, D Main, BC Nichol, EM Ainley, Dominik Leichtle,
A Mantri, Elham Kashefi, R Srinivas, G Araneda, et al. Verifiable blind quan-
tum computing with trapped ions and single photons. Physical Review Letters,

132(15):150604, 2024.
[8] Artur K Ekert. Quantum cryptography based on bell’s theorem. Physical review

letters, 67(6):661, 1991.
[9] Emmanouil Giortamis, Francisco Romão, Nathaniel Tornow, and Pramod Bhatotia.

Qos: A quantum operating system. arXiv preprint arXiv:2406.19120, 2024.
[10] Emmanouil Giortamis, Francisco Romão, Nathaniel Tornow, Dmitry Lugovoy, and

Pramod Bhatotia. Orchestrating quantum cloud environments with qonductor.
arXiv preprint arXiv:2408.04312, 2024.

[11] Google. Quantum ai. Accessed August 2024 from https://quantumai.google/.
[12] IBM. Ibm quantum. Accessed August 2024 from https://www.ibm.com/quantum.
[13] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008.
[14] Wen-Zhao Liu, Yu-Zhe Zhang, Yi-Zheng Zhen, Ming-Han Li, Yang Liu, Jingyun

Fan, Feihu Xu, Qiang Zhang, and Jian-Wei Pan. Toward a photonic demonstra-
tion of device-independent quantum key distribution. Physical Review Letters,
129(5):050502, 2022.

[15] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: dynamic causal
monitoring for distributed systems. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, page 378–393, New York, NY, USA, 2015.
Association for Computing Machinery.

[16] Microsoft. Azure quantum cloud service. Accessed August 2024 from https:
//azure.microsoft.com/en-us/products/quantum.

[17] Matteo Paris and Jaroslav Rehacek. Quantum state estimation, volume 649.
Springer Science & Business Media, 2004.

[18] Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum internet: A
vision for the road ahead. Science, 362(6412):eaam9288, 2018.

https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://quantumai.google/
https://www.ibm.com/quantum
https://azure.microsoft.com/en-us/products/quantum
https://azure.microsoft.com/en-us/products/quantum

	Abstract
	1 Motivation
	2 Challenges
	3 Observability in the Quantum Age
	3.1 Metrics
	3.2 Tracking Execution

	4 Call-To-Action
	References

