
Generating representative macrobenchmark
microservice systems from distributed traces with

Palette
Vaastav Anand

Max Planck Institute for Software Systems
Saarbrücken, Germany

Matheus Stolet
Max Planck Institute for Software Systems

Saarbrücken, Germany

Jonathan Mace
Microsoft Research

Seattle, USA

Antoine Kaufmann
Max Planck Institute for Software Systems

Saarbrücken, Germany

Abstract
Microservices are the dominant design for developing cloud
systems today. Advancements for microservice need to be
evaluated in representative systems, e.g. with matching scale,
topology, and execution patterns. Unfortunately in practice,
researchers and practitioners alike often do not have ac-
cess to representative systems. Thus they have to resort to
sub-optimal non-representative alternatives, e.g. small and
oversimplified synthetic benchmark systems or simulated
system models instead.

To solve this issue, we propose the use of distributed trace
datasets, available from large internet companies, to generate
representative microservice systems. To do so, we introduce
a novel abstraction of a system topology which uses Graphi-
cal Causal Models (GCMs) to model the underlying system
by incorporating the branching probabilities, execution or-
der of outgoing calls to every dependency, and execution
times. We then incorporate this topology in Palette, a sys-
tem that generates representative flexible macrobenchmarks
microservice systems from distributed traces.

1 Introduction
Modern cloud systems are developed as microservice sys-
tems. They have been adopted by many large companies
such as Facebook [15], Netflix [6], Uber [13], among oth-
ers [5, 14] due to the ability of microservices to be developed,
deployed, and scaled independently.
Validating and testing new advancements for microser-

vices often requires developers to experiment with interven-
tions—that is change aspects of the system with new design
decisions, architectural choices, algorithms, backend compo-
nents, and other strategies—in order to estimate and assess
their impact on the system.
Ideally, developers and researchers would execute these

intervention experiments on production systems to make
claims about the technique’s scalability and generalizabil-
ity. However, access to production systems is limited to a

select few. Even if one could procure access, the scope of
experimentation is limited to minimize disruptions.
Despite the limited access to production systems, dis-

tributed traces are often readily available and researchers
can use them to glean insight into these systems. Distributed
traces capture rich structural and temporal information about
the execution of the system, such as latency, execution pat-
terns, branch probabilities, and call probabilities.
We posit that distributed traces can support general pur-

pose intervention experiments given the rich volume of system
behavior they capture.
However, we believe that currently there are three key

challenges that prevent distributed traces from being used
for intervention experiments. First, while distributed traces
capture a variety of metrics, they are observations of the
intrinsic behavior of the system. The system behavior that
caused these observations is not explicitly captured in dis-
tributed traces. Thus, we need a mechanism that can use the
distributed traces to derive a model of the intrinsic behav-
ior of the system. Second, currently there is no mechanism
to convert intervention experiments into targeted modifica-
tions of the system without modifying the rest of the system
behavior. The fundamental tenet of an intervention experi-
ment requires that all the other factors in the system must
be held constant to isolate the impact of the intervention.
Third, converting distributed traces to a runnable system
for supporting general purpose intervention experiments is
non-trivial as different intervention experiments might wish
to preserve different characteristics of the systems.
To overcome these challenges, we propose Palette, a sys-

tem designed for natively supporting intervention experi-
ments using distributed traces. Palette provides a new ab-
straction called system topology that models system behavior
captured by generating a graphical causal model (GCM). To
support targeted modifications for interventions, Palette pro-
vides a primitive set of operations that allow developers to

Conference’17, July 2017, Washington, DC, USA Vaastav Anand, Matheus Stolet, Jonathan Mace, and Antoine Kaufmann

Use-case Meaningful properties

𝜇Service Performance[31,
32, 35]

Varying graph sizes, execution paths,
topology

Network Stacks[11, 18, 36] Request sizes, service execution time,
call depth, and call width

Congestion
Control[20, 41]

Varying topology, timeout values

Res. Management[26, 30] Varying execution paths, large ser-
vice graphs

Tracing Framework[10, 21,
33, 37]

Varying execution paths, large num-
ber of services

RPC Framework [17, 19] Varying request sizes

Table 1: Research use-cases and the ideal properties
from a benchmark system.

make localized changes in the system topology for a given in-
tervention. Finally, Palette provides a generation mechanism
for converting a system topology into runtime components.
Our proposed solution leverages the GCM at runtime to
model the causal dependencies from the original system and
uses it to more faithfully sample metrics for execution be-
havior, such as the amount of work to be done in a service
or the payload size to be used between two services given
the current state of the system.

2 Background and Motivation
2.1 Research Use Cases
Microservices have a large design space owing to its het-
ereogeneous nature. Consequently, the set of all possible
interventions a researcher can perform is also large. For in-
stance, researchers building a new network stack may be
interested in confirming that their design maintains low
tail latency under load so that requests meet their SLOs. To
test their hypothesis they need a system that matches the
characteristics of a real system such as request size, service
execution times, and call graph depth and width. Request
size matters because systems optimize differently based on
its average. Service execution is critical because services
with long execution times may see negligible benefits from a
faster network stack. Similarly, benefits may be amplified in
deep call graphs or offset by slow services in the critical path.
Therefore, generated systems should be able to modify and
preserve these properties so that interventions can be added
while still maintaining realistic performance characteristics.
Different use-cases, as evidenced in Table 1, will care about
different properties when introducing interventions to the
system. No single point solution system derived from traces
can support all possible interventions correctly.

2.2 The Role of Distributed Tracing
Distributed tracing is a critical monitoring component in
modern cloud systems. It provides troubleshooting support
for developers and operators during incident root-cause anal-
ysis and post-mortems. Distributed tracing supports this by
generating an execution trace of each request across all com-
ponents of the system. We believe that the data-rich nature
of distributed trace datasets represents an opportunity for
addressing the structural diversity issue in existing open-
source microservice systems for research use-cases.
Trace Details. A distributed trace contains the partially-
ordered list of all APIs (referred to as spans) executed by
the system to service the request. For each span, the trac-
ing framework captures the total amount of execution time
and the specific service (or component) at which the span
was executed. The tracing frameworks encodes caller-callee
relationships between APIs as parent-child relationships.
Distributed Tracing Workload Generation. Distributed
tracing can also be used to generate realistic workloads to
test solutions at large scale because of its rich collection of
execution data [8, 27].

2.3 Graphical Causal Models (GCMs)
Graphical Causal Models [9] are directed acyclic graphs
which encode causal relationships between the different
nodes in the graph. Each node represents a variable, i.e. some
observable data, and the edges represent causality. A directed
edge between two nodes signifies that a variable influences
the value of the other variable.
These models are useful for understanding the causal

effects of one variable on another [3] and have been ex-
tensively used in root cause analysis of microservice sys-
tems [4, 7, 16, 34, 40]. GCMs help preserve the properties of
the original system an can generate new samples (i.e. traces)
based on the causal structure of the system. As GCMs inter-
nally use inferred causal effects from the observed data, any
new sample generated by the GCM will be representative of
the original data. Due to this representativeness retention
property GCMs have been used in conjunctionwith traces for
performing intervention experiments in simulation [1, 38].

2.4 Existing Approaches
Trace Replay. A system that replays exact traces generated
from the original system guarantees that system behavior
will be representative. However, the issue arises when a
researcher performs an intervention and changes some com-
ponent or aspect of the system. In that situation, the system
will no longer have the ability to replay a prior execution be-
cause that execution is not present in the available traces. As
a result, the system could diverge from the original system
beyond the true impact of the intervention.

Generating representative macrobenchmark microservice systems from distributed traces with Palette Conference’17, July 2017, Washington, DC, USA

0 5 10 15 20 25
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Original
Regenerated

(a) Service A

0 5 10 15 20 25
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Original
Regenerated

(b) Service C

Figure 1: Latency CDFmismatch with simple statistical
approach

Simple Statistical Models. Another possible strawman so-
lution is to calculate an aggregate statistic (e.g. mean) for
each API as well as the execution probability for each down-
stream dependency call. However, this approach fails when a
downstream API has multiple callers each of which is provid-
ing a different amount of work. Let’s consider the scenario
with three services, where both Service A and Service Cmake
calls to a downstream Service B to perform some amount
of work. Service C configures an order of magnitude higher
work than Service A which results in Service C latency to
be an order of magnitude higher than Service A. However,
when we collect statistics about the downstream Service B,
this information is lost as we only get 1 statistic which is the
mean. If we were to re-generate the system using just this
simple statistic, then we would find that Service B would
almost take the same amount of time for calls originating
from Service C but take almost an order of magnitude higher
amount of time for calls originating from Service A. Figure 1
shows exactly this scenario where we find that the latency
distribution of Service A is shifted by almost an order of
magnitude. The reason why this approach fails is because
the latency of service B does not condition the sampling of
the latency on the upstream caller.
Open-sourcemicroservice benchmarks. These open-source
systems are single point solutions in the large design space
of microservice systems. While these systems [12, 25, 42]
are useful targets for validation and good targets for some
use-cases, the systems do not cover a representative enough
design space for researchers to explore [29]. Thus, these
are only useful for the specific use cases which do not re-
quire characteristics from the design space these systems
do not represent. For example, performing an intervention
experiment to test the efficacy of a new distributed tracing
system requires the system to preserve the property of a
large number of services and large fan-ins and fan-outs that
are commonly seen in production systems [15, 22, 23, 28, 39].
However, this is not possible with existing open source sys-
tems as even the largest available open-source microservice
system, TrainTicket [42], has only 45 services excluding
caches and databases.

Behavior Causal Equation

Probability(𝑐) 𝑝𝑎 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑐)
Sequential(𝑎1, . . . , 𝑎𝑛) 𝑝𝑎1 ∗ 𝜆𝑎1 ∗𝑎1 + · · · +𝑝𝑎𝑛 ∗ 𝜆𝑎𝑛 ∗𝑎𝑛 +𝐶
Concurrent(𝑎1, . . . , 𝑎𝑛) 𝑚𝑎𝑥 (𝑝𝑎1∗𝜆𝑎1∗𝑎1, . . . , 𝑝𝑎𝑛∗𝜆𝑎𝑛∗𝑎𝑛)+𝐶
Choice(𝑎1, . . . , 𝑎𝑛) 𝑝𝑎1 ∗𝜆𝑎1 ∗𝑎1 + · · · +𝑝𝑎𝑛 ∗𝜆𝑎𝑛 ∗𝑎𝑛 +𝐶 ,

such that, 𝑝𝑎1 + · · · + 𝑝𝑎𝑛 = 1

Table 2: Causal Equation for modeling latencies used
for a given GCM node

3 Palette Design
Figure 2 shows the design pipeline of Palette. Palette pro-
cesses trace datasets to generate a system topology that en-
codes structural relationships, execution patterns, and perfor-
mance characteristics of the observed system. This topology
is converted into specifications that encodes mechanisms to
ensure the preservation of the learned characteristics. Palette
then uses Blueprint [2] to generate a full implementation of
the system from these specifications.
The generated system is augmented with a GCM-based

runtime that steers execution to reflect the operation of the
original system. Our proposed system supports interventions
by allowing users to modify these abstractions to tailor the
generated system to their experimental needs, while still
being representative of the original system.

3.1 System Topology
Palette generates a system topology from the statistics col-
lected during trace processing; the topology encodes the
calculated statistical information into an abstract representa-
tion which can be exposed to the user for further modifica-
tion. It models the structural relationships within the system
through a directed graph that encodes the caller-callee in-
teractions between services and APIs, while a Probabilistic
Finite Automaton (PFA) captures the diverse execution path-
ways of each API. The topology models the performance
properties of the system by using a graphical causal model
(GCM). Both structural and performance properties of the
original system must be preserved to generate and execute a
new representative system.
Directed Graph Represents Topology. The system topol-
ogy is a directed graph,𝐺 = (𝑃,𝑉 , 𝐸), where 𝑃 is the set of all
services in the system, 𝑉 is the set of all APIs in the system,
and 𝐸 is the set of all edges between all APIs. Each partition
in the graph, 𝑝 ∈ 𝑃 , encodes a single service uniquely identi-
fied by its name. Each vertex in the graph, 𝑣 ∈ 𝑉 , encodes
a single unique API in the system and uniquely belongs to
a single partition. Each vertex is uniquely identified by a
combination of its name and the partition it belongs to. Each
edge in the graph, 𝑒 ∈ 𝐸, encodes a caller-callee relationship

Conference’17, July 2017, Washington, DC, USA Vaastav Anand, Matheus Stolet, Jonathan Mace, and Antoine Kaufmann

Distributed
Traces

Topology Generated
System

Trace
Processor

Topology
Modifier

System
Generator

Spec
Generator

Interventions

Figure 2: Palette Pipeline

𝑠𝑡𝑎𝑟𝑡

𝐵

𝐶

𝑓 𝑖𝑛𝑖𝑠ℎ𝐷 | |𝐸
0.5

0.4
0.1

0.9

0.1

0.8

0.2
1.0

Figure 3: Example PFA generated by Palette

between any two APIs in the system. Edges between ver-
tices in the same partition encode local function calls while
edges between vertices in different partitions encode remote
procedure calls.
PFA Encodes Execution Behavior. A PFA is used to model
the various execution behaviors exhibited by an API when
invoking its dependencies. For instance, it can be used to
distinguish between sequential and concurrent calls from
one API to another; this information is not captured by the
directed graph and the GCM. Figure 3 shows an example
PFA generated by Palette. The PFA for each API consists of
different states which the execution can be in. Every PFA has
a start state that represents the start of the API execution and
a finish state which represents the end of the API execution.
Additionally, the PFA contains other states, each of which
represents a local step in the API execution. Each state in
the PFA can make one or more concurrent outgoing calls
(with some probability) to dependencies. For example, in
Figure 3, nodes B and C only make one call whereas node
D∥E make two concurrent outgoing calls. Once the calls
end, the state can then transition into another state. The
transition edges encode the sequential nature of the API
execution. A state may transition into one of many possible
states with a different probability. For example, in Figure 3,
the start state transitions into state B with probability 0.4,
state C with probability 0.5, and state D∥E with probability
0.1. The PFA restricts state transitions such that the total
probability of all outgoing transitions for a state sum to one.
The probabilistic transition between many states encodes
the ability of different execution paths.

A_called

B_called

C_called

B_latency

C_latency

A_latency

Figure 4: Example latency causal graph

GCM Captures Performance Properties. A GCM is in-
cluded in the topology structure of each API to encode the
performance properties of the observed system. Suppose we
want to model the latency of an API, A, which calls two
downstream APIs, B and C with differing probabilities. Each
API’s latency is represented as a separate node, and the la-
tency of A depends on the latencies of B and C, in additional
to some local work. Figure 4 shows the causal graph for this
simple scenario. The latency of API A is directly influenced
by the latencies of B and C, so there are causal edges from
their latency nodes to A’s, that capture the combined impact
of their latency on A’s latency. Moreover, as B and C may
not always be called, this is represented as ‘called’ nodes in
the graph which represent the probability of B and C being
called. Here, each ‘called’ node can be modeled as a simple
Bernoulli distribution. However, the causal graph does not
distinguish between sequential calls to B and C from con-
current calls to B and C. This information is provided by
the PFA for the API, which determines how to combine the
values of the parents in the causal equation. Table 2 shows
the causal equation built for every latency node in the graph
based on the behavior of its immediate parents.

3.2 Generation mechanism
Generating Topology From Traces. Palette processes the
trace dataset to calculate statistical information about each
service from the traces including a list of all its APIs, the ex-
ecution time for each API, the probability of every outgoing
call for each API, and the dependencies for each service. The
collected information can be further augmented with more
statistics depending on the information available in traces.
During the processing, Palette also builds a PFA for each API
while it processes the trace data. Once the trace processing

Generating representative macrobenchmark microservice systems from distributed traces with Palette Conference’17, July 2017, Washington, DC, USA

finishes, Palette coarsens the PFA by merging similar states.
Palette then uses the built PFA to generate a causal graph for
each API and generates a causal equation for each node in
the causal graph. The causal equation is entirely dependent
on the specific performance property being modeled by the
GCM. Table 2 shows how the equation will be built for la-
tency nodes, the operations might be entirely different for a
different property such as payload sizes. Palette then fits the
built model to the observed trace data to find the values of
the coefficients (the various 𝜆𝑎) to estimate the causal effect
of each parent on a given node in the graph.
Topology to Specifications. Palette then converts the topo-
logical model into actual source code that encodes the per-
formance properties of the system. For each API, Palette
converts its corresponding PFA into a set of local functions
to encode PFA states and transitions. Palette also encodes
a GCM model for the API and links it to the GCM-enabled
runtime. For certain performance properties, Palette also
encodes how that property should be achieved. For example,
to achieve a sampled amount of latency, Palette chooses to
perform matrix multiplications for that amount of time.
Implementation Generation. We combine Palette with
Blueprint [2] to generate a full implementation of the system.
Blueprint provides the infrastructural pieces necessary for
generating a deployable version of the system.

3.3 Supporting Interventions
Palette supports interventions by allowing users to execute
interventions at four different stages.
Trace Processing Interventions. Users can modify the
trace processing step to filter out invalid or irrelevant edge
cases. Moreover, users can augment the data dimensions pro-
cessed by Palette and update the GCM generation procedure
to include these dimensions. New nodes can be added to the
graph to represent new dimensions of data and they can be
connected to existing nodes that they influence. For instance,
if an operator starts collecting data on the payload size of
different API calls, and the payload size affects the latency of
downstream calls, an edge between the payload size of the
calling service can be added to the vertex representing the
latency of the callee service.
Topological Interventions. The user can apply custom
modifications to the topology through a set of modification
primitives. For example, a researcher can add new edges
and vertices to represent new causal relationships between
microservices. Large topologies can also be downscaled to fit
the physical testbed available to the researcher by removing
edges and vertices representing the different APIs.
Specification Interventions. The user can change how a
performance property is achieved. For example, to achieve
desired latency, dependent on the use case, the user might

want its services to sleep and not do any work or they might
want the services to add work that is memory bound.
Instantiation Interventions. Users can add further inter-
ventions to the system by modifying the Blueprint IR to
modify concrete service implementations. For example, the
IR can be modified to support different RPC frameworks that
change how the actual benchmark system gets instantiated.

3.4 GCM-Based Runtime
Each API leverages the causal equation and coefficients pro-
duced by Palette to drive system execution in a way that
resembles the original system behavior. For example, the run-
time samples the GCM at each API to obtain values such as
the execution time or the payload size for outgoing messages.
These samples are conditioned on the causal relationships
encoded in the GCM, allowing the system to better capture
dependencies than sampling from the observed distributions.
Live Measurements. Palette makes measurements for dif-
ferent nodes of the causal graph during the execution and
uses these measurements into the local causal equations at
every API to make predictions about the expected behavior.
For example, consider the latency scenario from Figure 4.
In the implementation of API A, Palette will insert code to
measure the latency of the outgoing calls to B and C. Palette
will then plug the actual measured/observed values into the
causal equation to find the expected latency of A.
Causal Baggage Propagation. The causal graphs of some
APIs might require measurements made higher up in the
call chain that are not directly measurable at the service
executing the specific API. To ensure that all the relevant
information is correctly propagated by upstream nodes to the
downstream nodes, Palette uses baggage propagation [24]
to propagate the required measurements to the downstream
nodes executing the API. Palette can compile and inject the
exact code for adding the causal data into the baggage and
propagate it downstream along with the request because the
dependency graph is known at generation time.
Live Corrections. During the system execution, systems
may deviate from the expected behavior of the system. For
example, a timeout may be triggered in one of the APIs due
to different performance characteristics of the deployed hard-
ware. GCMs enable live corrections during runtime when
execution diverges from the behavior observed in the original
traces. The model enables more informed sampling decisions
about system behavior by conditioning the sampling process
on the underlying causal relationships that influence the
generated metrics.

Conference’17, July 2017, Washington, DC, USA Vaastav Anand, Matheus Stolet, Jonathan Mace, and Antoine Kaufmann

4 Conclusions
In this paper, we have presented the design of an extensible
system for generating representative macrobenchmark mi-
croservice systems from distributed trace datasets that uses
Graphical Causal Models (GCMs) for modeling system be-
havior to preserve the desired representative characteristics
of a microservice systems. We believe that Palette provides
a flexible way for users to conduct intervention experiments
to validate and test new advancements for microservices.

References
[1] Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish

Agarwal, Mohammad Alizadeh, and Devavrat Shah. {CausalSim}: A
causal framework for unbiased {Trace-Driven} simulation. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 1115–1147, 2023.

[2] Vaastav Anand, Deepak Garg, Antoine Kaufmann, and Jonathan Mace.
Blueprint: A toolchain for highly-reconfigurable microservice appli-
cations. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 482–497, 2023.

[3] Kailash Budhathoki, Dominik Janzing, Patrick Bloebaum, and Hoiyi
Ng. Why did the distribution change? In International Conference on
Artificial Intelligence and Statistics, pages 1666–1674. PMLR, 2021.

[4] Kailash Budhathoki, Lenon Minorics, Patrick Blöbaum, and Dominik
Janzing. Causal structure-based root cause analysis of outliers. In
International conference on machine learning, pages 2357–2369. PMLR,
2022.

[5] Adrian Cockcroft. The evolution of microservices. (April
2016). Retrieved October 2020 from https://www.slideshare.net/
adriancockcroft/evolution-of-microservices-craft-conference, 2016.

[6] Adrian Cockcroft. Microservices workshop: Why, what, and
how to get there. (April 2016). Retrieved October 2020 from
https://www.slideshare.net/adriancockcroft/microservices-
workshop-craft-conference, 2016.

[7] DoWhy documentation v0.8. Root cause analysis (rca) of latencies
in a microservice architecture. https://www.pywhy.org/dowhy/v0.8/
example_notebooks/rca_microservice_architecture.html, 2024. [Ac-
cessed 05-06-2025].

[8] Fanrong Du, Jiuchen Shi, Quan Chen, Li Li, and Minyi Guo. A mi-
croservice graph generator with production characteristics, 2024.

[9] Felix Elwert. Graphical causal models. In Handbook of causal analysis
for social research, pages 245–273. Springer, 2013.

[10] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker.
{X-Trace}: A pervasive network tracing framework. In 4th USENIX
Symposium on Networked Systems Design & Implementation (NSDI 07),
2007.

[11] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Íñigo Goiri, Sameh Elnikety, Rodrigo Fonseca, andAdamBelay. Making
kernel bypass practical for the cloud with junction. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24), pages 55–73, 2024.

[12] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 3–18, 2019.

[13] Einas Haddad. Service-oriented architecture: Scaling the uber engi-
neering codebase as we grow. (September 2015). Retrieved October
2020 from https://eng.uber.com/service-oriented-architecture/, 2015.

[14] Mazdak Hashemi. (January 2017). Retrieved February 2021 from
https://blog.twitter.com/engineering/en_us/topics/infrastructure/
2017/the-infrastructure-behind-twitter-scale.html, 2017.

[15] Darby Huye, Yuri Shkuro, and Raja R Sambasivan. Lifting the veil on
{Meta’s} microservice architecture: Analyses of topology and request
workflows. In 2023 USENIX Annual Technical Conference (USENIX ATC
23), pages 419–432, 2023.

[16] Dominik Janzing, Kailash Budhathoki, Lenon Minorics, and Patrick
Blöbaum. Causal structure based root cause analysis of outliers. arXiv
preprint arXiv:1912.02724, 2019.

[17] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, 2019.

[18] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. TAS: TCP acceleration
as an OS service. In 14th ACM European Conference on Computer
Systems, EuroSys, 2019.

[19] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making RPCs first-class datacenter citizens. In 2019
USENIX Annual Technical Conference, ATC, 2019.

[20] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, et al. Swift: Delay is simple and
effective for congestion control in the datacenter. In Proceedings of the
Annual conference of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architectures, and protocols
for computer communication, pages 514–528, 2020.

[21] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan
Mace. Sifter: Scalable sampling for distributed traces, without fea-
ture engineering. In Proceedings of the ACM Symposium on Cloud
Computing, pages 312–324, 2019.

[22] I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind
Chabbi. The tale of errors in microservices. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 8(3):1–36, 2024.

[23] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Lip-
ing Zhang, Yu Ding, Jian He, and Chengzhong Xu. Characterizing
microservice dependency and performance: Alibaba trace analysis.
In Proceedings of the ACM Symposium on Cloud Computing, pages
412–426, 2021.

[24] Jonathan Mace and Rodrigo Fonseca. Universal context propagation
for distributed system instrumentation. In Proceedings of the thirteenth
EuroSys conference, pages 1–18, 2018.

[25] microservices demo. Sockshop. Retrieved August 2022 from https:
//github.com/microservices-demo/microservices-demo, 2016.

[26] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk,
and Ravishankar K Iyer. {FIRM}: An intelligent fine-grained resource
management framework for {SLO-Oriented} microservices. In 14th
USENIX symposium on operating systems design and implementation
(OSDI 20), pages 805–825, 2020.

[27] Sultan Mahmud Sajal, Timothy Zhu, Bhuvan Urgaonkar, and Sid-
dhartha Sen. Traceupscaler: Upscaling traces to evaluate systems
at high load. In Proceedings of the Nineteenth European Conference on
Computer Systems, pages 942–961, 2024.

[28] Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu, Has-
san Wassel, Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Krishna-
murthy, David E Culler, and Henry M Levy. A cloud-scale characteri-
zation of remote procedure calls. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 498–514, 2023.

https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_architecture.html
https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_architecture.html
https://eng.uber.com/service-oriented-architecture/
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo

Generating representative macrobenchmark microservice systems from distributed traces with Palette Conference’17, July 2017, Washington, DC, USA

[29] Vishwanath Seshagiri, Darby Huye, Lan Liu, AvaniWildani, and Raja R
Sambasivan. [sok] identifying mismatches between microservice
testbeds and industrial perceptions of microservices. Journal of Systems
Research, 2(1), 2022.

[30] Gagan Somashekar, Karan Tandon, Anush Kini, Chieh-Chun Chang,
Petr Husak, Ranjita Bhagwan, Mayukh Das, Anshul Gandhi, and Na-
garajan Natarajan. {OPPerTune}:{Post-Deployment} configuration
tuning of services made easy. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), pages 1101–1120, 2024.

[31] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. Soft-
sku: Optimizing server architectures for microservice diversity@ scale.
In Proceedings of the 46th International Symposium on Computer Archi-
tecture, pages 513–526, 2019.

[32] Akshitha Sriraman and Thomas F Wenisch. {𝜇Tune}:{Auto-Tuned}
threading for {OLDI} microservices. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 177–194,
2018.

[33] Mert Toslali, Emre Ates, Alex Ellis, Zhaoqi Zhang, Darby Huye, Lan
Liu, Samantha Puterman, Ayse K Coskun, and Raja R Sambasivan.
Automating instrumentation choices for performance problems in dis-
tributed applications with vaif. In Proceedings of the ACM Symposium
on Cloud Computing, pages 61–75, 2021.

[34] Zhiqiang Xie, Yujia Zheng, Lizi Ottens, Kun Zhang, Christos Kozyrakis,
and Jonathan Mace. Cloud atlas: Efficient fault localization for cloud
systems using language models and causal insight. arXiv preprint
arXiv:2407.08694, 2024.

[35] Haoran Zhang, Konstantinos Kallas, Spyros Pavlatos, Rajeev Alur,
Sebastian Angel, and Vincent Liu. {MuCache}: A general framework
for caching in microservice graphs. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), pages 221–
238, 2024.

[36] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S Navarro Leija, Ashlie Martinez, Jing Liu, Anna Ko-
rnfeld Simpson, Sujay Jayakar, et al. The demikernel datapath os
architecture for microsecond-scale datacenter systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
pages 195–211, 2021.

[37] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan
Mace. The benefit of hindsight: Tracing {Edge-Cases} in distributed
systems. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 321–339, 2023.

[38] Yazhuo Zhang, Rebecca Isaacs, Yao Yue, Juncheng Yang, Lei Zhang,
and Ymir Vigfusson. Latenseer: Causal modeling of end-to-end latency
distributions by harnessing distributed tracing. In Proceedings of the
2023 ACM Symposium on Cloud Computing, pages 502–519, 2023.

[39] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek
Parwal, Timothy Sherwood, and Milind Chabbi. {CRISP}: Critical
path analysis of {Large-Scale} microservice architectures. In 2022
USENIX Annual Technical Conference (USENIX ATC 22), pages 655–672,
2022.

[40] Ziming Zhao, Zhenwei Wang, Tiehua Zhang, Zhishu Shen, Hai Dong,
Zhen Lei, Xingjun Ma, Gaowei Xu, Zhijun Ding, and Yun Yang. Chase:
A causal hypergraph based framework for root cause analysis in mul-
timodal microservice systems, 2025.

[41] Renjie Zhou, DezunDong, ShanHuang, and Yang Bai. Fasttune: Timely
and precise congestion control in data center network. In 2021 IEEE Intl
Conf on Parallel & Distributed Processing with Applications, Big Data
& Cloud Computing, Sustainable Computing & Communications, So-
cial Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),
pages 238–245. IEEE, 2021.

[42] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and
Wenyun Zhao. Poster: Benchmarking microservice systems for soft-
ware engineering research. In 2018 IEEE/ACM 40th International Con-
ference on Software Engineering: Companion (ICSE-Companion), pages
323–324. IEEE, 2018.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Research Use Cases
	2.2 The Role of Distributed Tracing
	2.3 Graphical Causal Models (GCMs)
	2.4 Existing Approaches

	3 Palette Design
	3.1 System Topology
	3.2 Generation mechanism
	3.3 Supporting Interventions
	3.4 GCM-Based Runtime

	4 Conclusions
	References

