
Intent-based System Design and Operation
Vaastav Anand§

Max Planck Institute for Software
Systems
Germany

vaastav@mpi-sws.org

Yichen Li§
The Chinese University of Hong

Kong
Hong Kong

ycli21@cse.cuhk.edu.hk

Alok Gautam Kumbhare
Microsoft

USA
alokk@microsoft.com

Celine Irvene
Microsoft

USA
celineirvene@microsoft.com

Chetan Bansal
Microsoft

USA
chetanb@microsoft.com

Gagan Somashekar
Microsoft

USA
gsomashekar@microsoft.com

Jonathan Mace
Microsoft

USA
jonathanmace@microsoft.com

Pedro Las-Casas
Microsoft
Brazil

pedrobr@microsoft.com

Rodrigo Fonseca
Microsoft

USA
fonseca.rodrigo@microsoft.com

Abstract
Cloud systems are the backbone of today’s computing indus-
try. Yet, these systems remain complicated to design, build,
operate, and improve. All these tasks require significant man-
ual effort by both developers and operators of these systems.
To reduce this manual burden, in this paper we set forth a
vision for achieving holistic automation, intent-based system
design and operation. We propose intent as a new abstraction
within the context of system design and operation. Intent
encodes the functional and operational requirements of the
system at a high-level, which can be used to automate design,
implementation, operation, and evolution of systems. We
detail our vision of intent-based system design, highlight
its four key components, and provide a roadmap for the
community to enable autonomous systems.

1 Introduction
Cloud-based services are systems that are deployed in pub-
lic cloud, run continuously, and are in a constant cycle of
development and operation. These systems are typically dis-
tributed, have many components, and are always evolving.
They have increasingly adopted a microservice architec-
ture [11, 12, 18, 20], where each of these components are
loosely coupled, can be developed separately using different
libraries and frameworks, and scaled independently.

Full automation of cloud systems has been a long standing
goal for developers and operators. However, despite the per-
sistent need, automation of the design, building, operation,
and maintenance [13, 15] of these systems has been elusive
for multiple reasons. First, designing systems is a long and

§Work done during internship at Microsoft

arduous process which requires correctly handling a myriad
of complex and intertwined requirements [16]. Second, there
has been a lack of standardization and a dearth of available
tooling that can allow developers to fully offload tasks. Third,
cloud systems tend to be large and complex which prevents
easy operation and understanding as it is impossible for any
single operator to have full insight into the operational con-
text of the system [13, 15]. Fourth, the environment in which
systems operate is continuously changing but the systems
are not designed to be easily reconfigurable [4].
We believe that we are now on the cusp of achieving the

elusive goal of automation. This is for two reasons. First,
there has been a confluence of standardization and automa-
tion tools, such as Kubernetes for deployment, maintenance,
and convergence of systems to desired states [36]; Open-
Telemetry for monitoring and observability via logs, traces,
and metrics; and automatic bug-finding and verification tools
that can be utilized in both development and production. Sec-
ond, the recent rise of Large Language Models (LLMs) has
provided increasingly sophisticated automatic coding and
code understanding tools, and ways for operators to interact
with their system at a higher level of abstraction. This has the
potential to reduce the significant manual effort usually re-
quired by operators for tasks such as incident detection [38],
incident management and mitigation [3, 17, 19, 23, 39], and
root cause analysis [3, 6, 9, 35, 42, 43].

For cloud systems to fully embrace automation across all
aspects, we need to be able to automatically carry out actions
according to the user’s intent. To do so, we extend the idea
of intent-based networking [10], where the network auto-
matically configures itself to meet operators’ intent, to the

ar
X

iv
:2

50
2.

05
98

4v
1

 [
cs

.D
C

]
 9

 F
eb

 2
02

5

Conference’17, July 2017, Washington, DC, USA Anand et al.

Intent

Automated Design Autonomous Operation

Continuous Improvement

Functional Intent Operational Intent

Generated System
Desired State

Context
Awareness

Patches

Figure 1: Intent-based cloud system components

Design a hotel reservation app as microservices. The
app should allow searching for hotels near a location,
search for activities near hotel, reserve and pay
for a hotel room, read and write reviews about the
hotels, and manage user's data.

Figure 2: Functional Intent Example

The app should have timely responses under high load
and maintain a 100ms 99th percentile latency.

Figure 3: Operational Intent Example

broader context of cloud systems by combining automation
tools with the generative capabilities of LLMs.

In this paper, we introduce our vision of intent-based self-
managing cloud systems. Our goal is to enable users to spec-
ify high-level intents for the system, and have the system
automatically designed, developed, and operated. We envision
that the creators and operators of cloud systems will be able
to describe at a high level their functional and operational
intent for the system, and automatic, intelligent tools will
be able to design, implement, and test the system, while in-
tegrating the monitoring necessary to operate the system
within desired availability, reliability, and safety constraints.

2 Intent for Cloud System Design
We introduce intent [10] as a high-level abstraction within
the context of system design and operations. Intent repre-
sents the potentially changing functional and operational
requirements of the system from the user. Figure 1 illustrates
the proposed components for a intent-based cloud system.
The proposed components include automated design, auto-
matic operation, and continuous improvement of systems.
We propose that there exist two broad classes of intent.

First, functional intent represents the feature requirements
of the system. These include the functional requirements, se-
curity requirements, as well as design requirements. Figure 2
shows an example functional intent for a hotel reservation ap-
plication. Second, operational intent represents the operating

properties of the system which is used to derive the system
SLA as well as metrics and monitors for gaining detailed in-
sights into system behavior, ways to detect deviations from
intended behavior, and strategies for mitigating issues and
incidents. Figure 3 shows an example operational intent for
an application. To accommodate changes to systems over
time, we define the desired changes in the functional and
operational intent as refinement intent. Refinement intent
represents the delta between the initial intent and the new
intent and is used for automatically improving the system.

2.1 Manifesting Intent
Currently, developers and operators manifest intent in cloud
systems as part of the software development lifecycle (SDLC).
SDLC is commonly divided into six phases [2] - (i) require-
ments engineering to extract desired features, (ii) prioritizing
features and estimating effort, (iii) designing the system, (iv)
implementing the selected design, (v) testing and productiz-
ing to ensure that the system is correct and understandable,
(vi) deploying and maintaining the system.

As part of the SDLC, the functional and operational intent
are extracted during the requirements engineering phase and
converted into concrete actions manually taken by develop-
ers and operators through the other phases of the SDLC.
Instead of manifesting intent manually, we instead pro-

pose a human-in-the-loop approach for automating different
phases of the SDLC to reduce the manual burden on devel-
opers and operators. Our human-in-the-loop approach uses
LLMs to generate concrete actions that are then applied on
the target system via automation tools.

2.2 Challenges
Reliability and Correctness. LLMs are well known to suf-
fer from hallucinations [22] that lead to correctness issues
in their output. Additionally, LLMs struggle with numerical
and logical reasoning tasks leading to factually incorrect or
inconsistent output. The output quality issue is further com-
pounded for code generation tasks as the knowledge base
of LLMs may consist of buggy, incorrect, or poorly written
code. Ensuring the reliability of their outputs requires robust
verification mechanisms and careful human oversight.
Explainability. Human operators must be able to verify
and understand the rationale behind the actions selected
by LLMs to ensure they align with the user intent. This
requires implementing mechanisms for clear documentation,
justification of actions, and validation processes to build
trust and enable effective oversight. Failure to do so can
cause unforeseen issues and monetary loss [7].
Providing accurate context. The outputs of LLM is directly
dependent on the quality of the information provided as
context in the input prompt. Cloud systems tend to be large in
size spanning thousands of lines of code and documentation,

Intent-based System Design and Operation Anand et al.

generating billions of traces [24], and PetaBytes of logs [31]
per day. Extracting relevant information to serve as context
for inputs to the LLM is a challenging task.
Action Selection. LLMs suffer from instruction inconsis-
tency [22], in which LLMs deviate from user directives. This
deviation can lead the LLM to misinterpret the user’s intent
and select inappropriate actions. The problem of selecting
the correct action is exacerbated by the large number of
potential actions in large-scale cloud systems.
Dynamic Adaptation. Certain actions selected by the LLM
might require changing the system online. This requires the
systems to dynamically adapt while still running without
requiring bringing the system offline. The system needs to
have the ability to dynamically reconfigure itself and contin-
uously update and adapt.

3 Intent-based self-managing cloud systems
In typical design and implementation of cloud systems, devel-
opers and operators manually manifest intent for four high
level tasks. In this section, we detail an LLM-based approach
for automating intent manifestation for these four tasks.

3.1 Distributed System Design
Developers often struggle with designing distributed systems
because it requires managing the complexities of multiple
independent moving pieces while ensuring the correctness,
performance, and reliability of the system. To combat these is-
sues, developers rely on principles and hints [25, 26] to select
an appropriate design which they then manually implement
using standardized tools such as Docker and OpenTelemetry.
Naturally, this is a manually arduous process.
Key Idea. To alleviate the manual effort on developer, we
propose using LLMs to convert the intent of the users, pro-
vided as user requirements, into concrete implementations.
User Requirements. The user requirements represent the
intent of the various stakeholders. The functional require-
ments and the desired architecture pattern comprise the
functional intent of the system. The behavioral properties of
the system are the operational intent of the system.
Requirements. To generate a reliable, effective design of a
distributed system, there are three different classes of require-
ments that a automatically generated system must provide.
First, correctness guarantees, which include correctness with
respect to user requirements, test suites, and formal speci-
fications of the system. Second, explainability guarantees:
the generated code must be understandable by humans and
should provide more artifacts that can be used by developers
to gain insights into the system. Third, performance guar-
antees, which may include scalability, SLOs, and absence of
emergent misbehaviors [8, 21, 32].

3.1.1 Use Case: Generating Microservices
Microservices are a pervasive design architecture commonly
used for developing modern cloud systems [11, 12]. Due to
their importance, there has been a growing interest in au-
tomating the generation and deployment of microservice sys-
tems [1, 4, 14]. However, the effort has largely been focused
on automating the generation of infrastructure components
of the system rather than the business logic.

Cerulean [5] is a human-in-the-loop system that combines
the generative capabilities of LLMs to generate the business
logic of the system and then converts the business logic of
the system into input specifications of Blueprint [4]. To gen-
erate the business logic, Cerulean proposes a hierarchical
generation procedure that decomposes the system generation
process into multiple steps at different levels of abstraction
of the system design process including high-level design,
low-level design, and unit-test generation. This process de-
composes the functional intent and iteratively converts the
intent into specific design choices of the system.
We leverage the modularity of Cerulean and extend the

hierarchical generation process with two novel components
to show how the hierarchical generation process can be ex-
tended to improve the quality of the generated system. First,
we introduce an end-to-end test-case generation component
that extends the implementation generation phase of the hier-
archical generation process to also generate end-to-end tests
of the system. To do this, first the component uses LLMs to
extract end-to-end use-cases from the functional intent of
the user. It then generates an implementation plan consisting
of API calls to the frontend service(s) of the system using
the generated interfaces in a previous phase. The component
then uses this plan to generate a concrete end-to-end test
that can be executed as a traditional go test or be compiled
as a blackbox test that can be run against the deployed sys-
tem. Second, we introduce a workload generator component
that automatically generates workload processes that can
be used by developers to benchmark the deployed system.
The workload generator component expects that the input
operational intent includes a description of the target work-
load. If the description is missing, then the user is prompted
to provide a description. The component then uses this de-
scription along with the previously generated interfaces to
generate a process that exercises the target workload when
executed against the deployed system.

We believe that Cerulean’s hierarchical generation process
can be further extended to provide additional guarantees
for the generated system such as verification guarantees by
incorporating the use and generation of formal models.

Conference’17, July 2017, Washington, DC, USA Anand et al.

3.2 Real-Time Context Awareness
Real-time context awareness refers to the ability of the sys-
tem to continuously and accurately understand its current
operational state and the context in which it operates. This
understanding is essential for the system to make informed
decisions and take appropriate actions to meet the user’s intent.
Key idea. To provide a cloud system the ability to contin-
uously and autonomously comprehend its state and opera-
tional environment in alignment with the user’s specified
intent, we combine advanced monitoring techniques with
LLMs. By correlating the different sources and forms of run-
time data, we create a unified representation of the system’s
operational state. This representation is then connected with
the system’s domain knowledge (e.g., code, documentation)
to generate the system context. As opposed to existing single-
modal data approaches for analyses tasks [28–30, 33], context
encapsulates and connects relevant information from vari-
ous sources to provide a holistic view which can be used for
further automated operations or for providing developers
with relevant information for analysis tasks.
Context. Context represents the current operational infor-
mation of the system comprising both runtime information
and domain knowledge. Runtime information includes met-
rics, logs, traces, and monitors. Domain knowledge includes
code, documentation, and operational guidelines such as
troubleshooting guides. The real-time context awareness
framework provides the intent-related contextualized and
summarized knowledge for analyses tasks.
Requirements.To achieve effective real-time context aware-
ness, it is essential to have comprehensive observability that
covers different aspects of the system, including performance
metrics, logs and traces. Cloud systems generate a large
amount of data. It is crucial to understand the intent and use
it a guiding principle to filter the relevant data.

3.2.1 Use Case: Behavior Comprehension

MetricLog Trace

Runtime Information

Historical Patterns

Docs

LLM Context
Comprehension

Code Config

System Domain Knowledge
Automated

Design

Automated
Operation

Self
Improvement

User Intent

Figure 4: Real-time context awareness.

We bridge runtime data with service domain knowledge
based on user intent, as shown in Figure 4. The intent is
essential to determining the scope of the data that is needed.
This framework allows us to extract and refine pertinent

system domain knowledge, offering real-time system com-
prehension based on user intents.
Runtime Data Modeling. We model multi-modal runtime
data as loosely unified event graphs [41], representing the
system’s current execution state for real-time retrieval and
modeling based on user intent. The runtime data includes
metrics, monitors, logs, and traces. For the metrics, we repre-
sent their events as anomalies or deviations from the normal
behavior. For logs, we mine patterns to identify sequences
that require particular attention and understanding, treating
each subsequence as an event. Traces function as connec-
tors between these events, delineating the interactions and
dependencies among various components. This integrated
approach allows us to create a real-time and comprehensive
mapping of the system behavior.
System Domain Knowledge Extraction.We extract rel-
evant descriptions from documentation for logs and alerts
that involve specific terms. We extract the related source
code for logs and integrate it into our context.
Comprehension Generation. We continuously correlate
and integrate context data to provide real-time system com-
prehension. Pattern mining and comprehension generation
are triggered on-demand, avoiding unnecessary cost. The
generated system comprehension serves as fundamental,
shareable knowledge for users and different components.

3.3 System Operation
Operating a system is a complex task. Systems can be com-
posed of many different components, can be built at differ-
ent layers and usually evolves over time. Despite several
advances in automating different aspects of system opera-
tion [34, 40], there is still a constant stream of failures and
incidents that require human intervention.
Key idea. To fully automate system operation, we translate
operational intent provided by the user into an ops model that
is used to automate the system operation. We combine the
model with the real-time insights from the context compre-
hension component, which enables the system to anticipate
potential issues, automate decision-making, and execute op-
erational tasks with minimal human intervention.
Ops model. The operational intent provides the operational
properties of the system including the SLOs and SLAs. The
operation intent is translated to an operational model, ops
model, that is used to guide the system operation. The ops
model defines the desired state of the system and identifies
and prioritizes the potential risks and vulnerabilities in the
system operations to SLAs. It formalizes the set of observabil-
ity (metrics, monitors, logs, traces) required to identify and
diagnose potential issues and defines the set of mitigations
and countermeasures to be taken in case of failures. The ops
model is not static and can evolve over time as the system
evolves and the user requirements change.

Intent-based System Design and Operation Anand et al.

Requirements .To effectively operate a system based on the
user’s intent, it is essential to have a clear definition of the
desired state, the operations, their outcomes and constraints.
It is also important to have comprehensive understanding
of the system’s state and environment, including the ability
to anticipate potential deviations from the desired state and
to to identify and mitigate these issues. Furthermore, it is
required an intelligent decision-making engine that can inter-
pret the operational intent and contextual insights, enabling
automated actions and proactive mitigation strategies.

3.3.1 UseCase: Automated IncidentManagement
Current cloud providers rely on human intervention guided
by troubleshooting guides (TSGs) to mitigate and resolve
issues that frequently occur to their services. Automating
the execution of TSGs can significantly reduce the time to
mitigation (TTM) and reduce the burden of SREs. For ex-
ample, Llexus [27] is a tool that aims to automate the exe-
cution of TSGs by using LLM agents to produce executable
plans from a source TSG. Llexus uses human-generated trou-
bleshooting guides to create executable plans. These plans
are executed when new incidents occur, enabling automatic
mitigation and resolution of issues in cloud services.
As noted, this current approach improves the process of

automatically mitigating and resolving issues in cloud ser-
vices, but it still requires human curated TSGs with high
quality and coverage as input. We envision that leveraging
the ops model along with real-time context comprehension
can provide a powerful framework for automating incident
management in cloud services. The ops model’s detailed def-
inition of operational requirements, observability metrics,
and potential mitigation, combined with the context compre-
hension service’s ability to dynamically monitor and under-
stand the system state, can enable the automatic generation
of actionable instructions. These instructions can be used as
input to Llexus to generate executable plans and automati-
cally mitigate and resolve possible issues that might happen
to the system.

3.4 System Improvement

Developer Target &
Requirements

Hierarchical
Generation

Execution Engine
System

Figure 5: System improvement with Hierarchical Generation

As the system is deployed and runs, there can be devia-
tions from intent due to several causes. There can be many
reasons for intent violation, including unseen bugs, changes

in workloads, metastable failures [8], or changes in the in-
tent itself. We need the system to automatically detect such
intent violations and adjust itself, either by changing config-
urations, fixing the code, or redesigning parts, or the whole
of, the system itself.
Key Idea. We detect intent violations by coupling the func-
tional and operation intents, at different levels, with the
real-time context awareness described in §3.2 to generate
the refinement intent. We then address the refinement intent
either by dynamically re-configuring the system [37] or by
re-designing the system §3.1 at the desired abstraction level.
Figure 5 depicts the continuous improvement process that
uses hierarchical generation process from Cerulean [5] to
continuously re-generate implementations of the system.

3.4.1 Use Case: Mitigating Metastable Failures
Metastable failures [8, 21] are caused by a trigger that either
increases the load on the system or reduces the capacity
of the system to handle the load. These triggers are often
unknown at development time; thus preventing the systems
from testing and safeguarding against such scenarios.
Once these metastable failures happen in deployed sys-

tems, we use the data collected from the context-awareness
and autonomous operations components to generate trigger-
scenarios which are used to reproduce themetastable failures
in controlled settings of the system. We can then use hier-
archical generation to generate new candidate designs for
the system and then re-run the trigger scenarios to test if
the system can avoid going into a metastable state while
still adhering to the functional and operational intent. This
process is repeated until a suitable design is found.

4 Future Directions
The realization of fully autonomous intent-based systems ne-
cessitates research advancements in several areas.We outline
the key directions to achieve this vision.
Manifesting Intent. It is crucial to help users specify, refine,
and understand their intent, balancing specificity, ambiguity,
and user-friendliness. The goal is to minimize user burden
while efficiently translating intent into service and operation
models. It is also critical to keep the users engaged, instead
of just pressing ‘yes’ in key human-in-the-loop moments.
Autonomous Design and Implementation. Challenges
include deterministic translation from models to systems,
providing explanability and verifiability for generated arti-
facts, reasoning about design choices, optimizing for given
intents and metrics, and building testable solutions. Mitigat-
ing LLMs hallucinations and non-determinism, integrating
formal verification, and dealing with the cases in which both
the generated systems and tests agree, but are wrong, are
concrete areas of research.

Conference’17, July 2017, Washington, DC, USA Anand et al.

Service and Operations Modeling. These models, captur-
ing both functional and operational requirements, form the
first step in translating intent into system design. The chal-
lenge lies in developing comprehensive, machine-readable
models that can generate and operate the system while pro-
viding explanability and verifiability.
Reasoning and Decision Making. The system should in-
corporate intent and service context to determine the best
course of action for an intent violation. The challenge is to
develop reasoning mechanisms that can handle uncertainty,
conflicting intents, and changing contexts, while providing
human-consumable explanations.
Autonomous Operations and Self-healing. These involve
short-term mitigations and long-term fixes. A key challenge
is to find the right level of intervention. Continuous learn-
ing and adaptation, an integral part of the system, presents
challenges including representation, guard-rails, reliability
of operations, and security.
Software Engineering Processes must evolve to support
intent-based systems. Traditional methodologies like Agile
will need to incorporate autonomy to support the design,
implementation, testing, and deployment of such systems.

5 Conclusion
We presented a vision for an intent-based cloud system de-
sign and operation that aims to enable fully autonomous
systems that can understand, design, operate, and improve
themselves based on user intent.We believe that such a grand
vision would require multiple research communities to ex-
plore solutions in tandem to address these challenges and
lead to a new class of systems and services equipped with
improved productivity, reliability, and maintenance.

References
[1] Dapr: Distributed application runtime. https://dapr.io/.
[2] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile soft-

ware development methods: Review and analysis. arXiv preprint
arXiv:1709.08439, 2017.

[3] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and S. Ra-
jmohan. Recommending root-cause and mitigation steps for cloud
incidents using large language models. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE), pages 1737–1749.
IEEE, 2023.

[4] V. Anand, D. Garg, A. Kaufmann, and J. Mace. Blueprint: A toolchain
for highly-reconfigurable microservice applications. In Proceedings of
the 29th Symposium on Operating Systems Principles, pages 482–497,
2023.

[5] V. Anand, A. Kumbhare, C. Irvene, C. Bansal, G. Somashekar, J. Mace,
P. Las-Casas, and R. Fonseca. Automated service design with cerulean.
To appear in 6th InternationalWorkshop on Cloud Intelligence / AIOps
(AIOps ’25), 2025.

[6] V. Anand, P. Las-Casas, R. Fonseca, and A. Kaufmann. Towards using
llms for distributed trace comparison. To appear in 6th International
Workshop on Cloud Intelligence / AIOps (AIOps ’25), 2025.

[7] Asim. How a single chatgpt mistake cost us $10,000+. Accessed 9th
June, 2024 from https://web.archive.org/web/20240610032818/https:
//asim.bearblog.dev/how-a-single-chatgpt-mistake-cost-us-10000/,
2024.

[8] N. Bronson, A. Aghayev, A. Charapko, and T. Zhu. Metastable failures
in distributed systems. In Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 221–227, 2021.

[9] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao, H. Fan,
M. Wen, et al. Empowering practical root cause analysis by large
language models for cloud incidents. arXiv preprint arXiv:2305.15778,
2023.

[10] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura. Rfc 9315:
Intent-based networking - concepts and definitions, 2022.

[11] A. Cockcroft. The evolution of microservices. (April 2016). Retrieved
October 2020 from https://www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference, 2016.

[12] A. Cockcroft. Microservices workshop: Why, what, and how
to get there. (April 2016). Retrieved October 2020 from
https://www.slideshare.net/adriancockcroft/microservices-
workshop-craft-conference, 2016.

[13] V. Ganatra, A. Parayil, S. Ghosh, Y. Kang, M. Ma, C. Bansal, S. Nath, and
J. Mace. Detection is better than cure: A cloud incidents perspective.
In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 1891–1902, 2023.

[14] S. Ghemawat, R. Grandl, S. Petrovic, M. Whittaker, P. Patel, I. Posva,
and A. Vahdat. Towards modern development of cloud applications.
In Proceedings of the 19th Workshop on Hot Topics in Operating Systems,
pages 110–117, 2023.

[15] S. Ghosh, M. Shetty, C. Bansal, and S. Nath. How to fight production
incidents? an empirical study on a large-scale cloud service. In Pro-
ceedings of the 13th Symposium on Cloud Computing, pages 126–141,
2022.

[16] A. Gluck. Introducing domain-oriented microservice architecture.
Accessed June 2024 from https://www.uber.com/blog/microservice-
architecture/, 2020.

[17] D. Goel, F. Husain, A. Singh, S. Ghosh, A. Parayil, C. Bansal, X. Zhang,
and S. Rajmohan. X-lifecycle learning for cloud incident management
using llms. arXiv preprint arXiv:2404.03662, 2024.

[18] E. Haddad. Service-oriented architecture: Scaling the uber engineering
codebase as we grow. (September 2015). Retrieved October 2020 from
https://eng.uber.com/service-oriented-architecture/, 2015.

[19] P. Hamadanian, B. Arzani, S. Fouladi, S. K. R. Kakarla, R. Fonseca,
D. Billor, A. Cheema, E. Nkposong, and R. Chandra. A holistic view of
ai-driven network incident management. In Proceedings of the 22nd
ACM Workshop on Hot Topics in Networks, pages 180–188, 2023.

[20] M. Hashemi. The infrastructure behind twitter : Scale. (January 2017).
Retrieved February 2021 from https://blog.twitter.com/engineering/
en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-
scale.html, 2017.

[21] L. Huang, M. Magnusson, A. B. Muralikrishna, S. Estyak, R. Isaacs,
A. Aghayev, T. Zhu, and A. Charapko. Metastable failures in the
wild. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 73–90, 2022.

[22] L. Huang,W. Yu,W.Ma,W. Zhong, Z. Feng, H.Wang, Q. Chen,W. Peng,
X. Feng, B. Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv
preprint arXiv:2311.05232, 2023.

[23] Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang,
S. Rajmohan, Q. Lin, et al. Xpert: Empowering incident management
with query recommendations via large languagemodels. arXiv preprint
arXiv:2312.11988, 2023.

https://dapr.io/
https://web.archive.org/web/20240610032818/https://asim.bearblog.dev/how-a-single-chatgpt-mistake-cost-us-10000/
https://web.archive.org/web/20240610032818/https://asim.bearblog.dev/how-a-single-chatgpt-mistake-cost-us-10000/
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.uber.com/blog/microservice-architecture/
https://www.uber.com/blog/microservice-architecture/
https://eng.uber.com/service-oriented-architecture/
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html

Intent-based System Design and Operation Anand et al.

[24] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi, et al. Canopy: An end-to-end
performance tracing and analysis system. In Proceedings of the 26th
symposium on operating systems principles, pages 34–50, 2017.

[25] B. Lampson. Hints and principles for computer system design. arXiv
preprint arXiv:2011.02455, 2020.

[26] B. W. Lampson. Hints for computer system design. In Proceedings
of the ninth ACM symposium on Operating systems principles, pages
33–48, 1983.

[27] P. Las-Casas, A. Kumbhare, R. Fonseca, and S. Agarwal. Llexus: an ai
agent system for incident management. SIGOPS Oper. Syst. Rev., 58(1),
2024. To appear.

[28] C. Lee, T. Yang, Z. Chen, Y. Su, and M. Lyu. Maat: Performance metric
anomaly anticipation for cloud services with conditional diffusion. In
2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 116–128. IEEE, 2023.

[29] Y. Li, X. Zhang, S. He, Z. Chen, Y. Kang, J. Liu, L. Li, Y. Dang, F. Gao,
Z. Xu, et al. An intelligent framework for timely, accurate, and com-
prehensive cloud incident detection. ACM SIGOPS Operating Systems
Review, 56(1):1–7, 2022.

[30] F. Lin, K. Muzumdar, N. P. Laptev, M.-V. Curelea, S. Lee, and S. Sankar.
Fast dimensional analysis for root cause investigation in a large-scale
service environment. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 4(2):1–23, 2020.

[31] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu. Logzip: Extracting
hidden structures via iterative clustering for log compression. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 863–873. IEEE, 2019.

[32] J. C. Mogul. Emergent (mis) behavior vs. complex software systems.
ACM SIGOPS Operating Systems Review, 40(4):293–304, 2006.

[33] C. M. Rosenberg and L. Moonen. Spectrum-based log diagnosis. In
Proceedings of the 14th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 1–12, 2020.

[34] D. Roy, X. Zhang, R. Bhave, C. Bansal, P. Las-Casas, R. Fonseca, and
S. Rajmohan. Exploring llm-based agents for root cause analysis. In
Companion Proceedings of the 32nd ACM International Conference on
the Foundations of Software Engineering, FSE 2024, page 208–219, New
York, NY, USA, 2024. Association for Computing Machinery.

[35] V. Seshagiri, S. Balyan, V. Anand, K. Dhole, I. Sharma, A. Wildani,
J. Cambronero, and A. Züfle. Chatting with logs: An exploratory study
on finetuning llms for logql. arXiv preprint arXiv:2412.03612, 2024.

[36] E. Shanks. Kubernetes - desired state and control loops. Ac-
cessed July, 2024 from https://theithollow.com/2019/09/16/kubernetes-
desired-state-and-control-loops/, 2019.

[37] G. Somashekar, K. Tandon, A. Kini, C.-C. Chang, P. Husak, R. Bhagwan,
M. Das, A. Gandhi, and N. Natarajan. OPPerTune: Post-Deployment
configuration tuning of services made easy. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24), pages
1101–1120, Santa Clara, CA, Apr. 2024. USENIX Association.

[38] P. Srinivas, F. Husain, A. Parayil, A. Choure, C. Bansal, and S. Rajmohan.
Intelligent monitoring framework for cloud services: A data-driven ap-
proach. In Proceedings of the 46th International Conference on Software
Engineering: Software Engineering in Practice, pages 381–391, 2024.

[39] H. Wang, G. K. Tangirala, G. P. Naidu, C. Mayville, A. Roy, J. Sun,
and R. B. Mandava. Anomaly detection for incident response at scale.
arXiv preprint arXiv:2404.16887, 2024.

[40] Z. Xie, Y. Zheng, L. Ottens, K. Zhang, C. Kozyrakis, and J. Mace.
Cloud atlas: Efficient fault localization for clou systems using lan-
guage models and causal insight. Accessed 11th July, 2024 from
https://people.mpi-sws.org/~jcmace/papers/xie2024cloud.pdf, 2024.

[41] G. Yu, P. Chen, Y. Li, H. Chen, X. Li, and Z. Zheng. Nezha: Interpretable
fine-grained root causes analysis for microservices on multi-modal

observability data. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 553–565, 2023.

[42] D. Zhang, X. Zhang, C. Bansal, P. Las-Casas, R. Fonseca, and S. Rajmo-
han. Lm-pace: Confidence estimation by large language models for
effective root causing of cloud incidents. In Companion Proceedings of
the 32nd ACM International Conference on the Foundations of Software
Engineering, pages 388–398, 2024.

[43] X. Zhang, S. Ghosh, C. Bansal, R. Wang, M. Ma, Y. Kang, and S. Raj-
mohan. Automated root causing of cloud incidents using in-context
learning with gpt-4. arXiv preprint arXiv:2401.13810, 2024.

https://theithollow.com/2019/09/16/kubernetes-desired-state-and-control-loops/
https://theithollow.com/2019/09/16/kubernetes-desired-state-and-control-loops/
https://people.mpi-sws.org/~jcmace/papers/xie2024cloud.pdf

	Abstract
	1 Introduction
	2 Intent for Cloud System Design
	2.1 Manifesting Intent
	2.2 Challenges

	3 Intent-based self-managing cloud systems
	3.1 Distributed System Design
	3.2 Real-Time Context Awareness
	3.3 System Operation
	3.4 System Improvement

	4 Future Directions
	5 Conclusion
	References

