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Abstract

Specializing systems to specifics of the workload they serve
and platform they are running on often significantly im-
proves performance. However, specializing systems is diffi-
cult in practice because of compounding challenges: i) com-
plexity for the developers to determine and implement op-
timal specialization; ii) inherent loss of generality of the
resulting implementation, and iii) difficulty in identifying
and implementing a single optimal specialized configuration
for the messy reality of modern systems.

To address this, we introduce Iridescent, a framework for
automated online system specialization guided by observed
overall system performance. Iridescent lets developers spec-
ify a space of possible specialization choices, and then at
runtime generates and runs different specialization choices
through JIT compilation as the system runs. By using overall
system performance metrics to guide this search, developers
can use Iridescent to find optimal system specializations for
the hardware and workload conditions at a given time. We
demonstrate feasibility, effectivity, and ease of use.

1 Introduction

Specializing system implementations to workload character-
istics and hardware can significantly improve performance
and efficiency [3, 6, 15, 17, 19, 22, 25, 26, 33, 34, 43, 44, 46, 51,
53, 56, 57, 60, 64]. Achieving these benefits requires manual
modification the system implementations and recompilation.
Part of the performance benefit arises from cascading com-
piler optimizations, e.g. by removing a feature enabling the
compiler to eliminate dead code, in turn enabling further
optimizations [22, 47, 61]. Today, system specialization for
performance is manual, developer-driven, and iterative.

Building optimal systems in practice is a challenge because
of three compounding factors: First, specialization is difficult
for developers to implement, as it requires trial-and-error
and maintaining multiple versions of key code paths. Next,
specialization fundamentally comes at the cost of generality
— a specialized system either performs poorly outside its
regime, or completely fails. Finally, predicting performance
implications of specialization choices for different workloads
and hardware is almost impossible. To make matters worse,
workload and platform conditions are dynamic and optimal
specialization choices depend on them.

We propose a fundamentally different approach: auto-
mated online system specialization guided by observed overall
system performance. Our goal is to specialize performance
critical system systems at runtime to the exact momentary
workload and hardware conditions, without the human de-
veloper on the critical path. To enable this, we re-distribute
tasks between ahead of time development and runtime oper-
ation. Ahead of deployment, rather than choosing a concrete
set of specializations, developers specify the space of possible
specializations, along with a search strategy. After deploy-
ment, our runtime iteratively generates different specialized
code versions, choosing the current optimum based on ob-
served overall system performance. This turns compile-time
specialization into runtime parameter tuning, suitable for
search-based auto-tuning [57, 60].

To enable this, we introduce Iridescent, a framework for
practical development of fast and efficient systems with on-
line specialization. Iridescent enables both the incremental
specialization of existing code-bases with minimal modifica-
tions, and in-depth design for specialization for maximizing
performance. Iridescent builds on LLVM to target systems
written in typical (non-managed) languages such as C(++) or
Rust. Concretely, Iridescent supports the developer in sepa-
rating the code-base into a specialized, performance critical
core, and the remaining generic code. Iridescent then pro-
vides the developer with a specialization API to annotate
possible specializations in the code thereby specifying the
space of possible specializations. Additionally, Iridescent pro-
vides hooks to optionally customize JIT code generation in
depth. Finally, Iridescent provides the runtime API to control
the exploration of different specialized implementations as
the system runs.

We integrate Iridescent with multiple systems and show
that with Iridescent enabled specializations, systems can gain
a performance boost of upto 30x. Moreover, with Iridescent,
developers can easily configure the system to automatically
explore the specialization space to adaptively find the best
performing specialization for different workloads at runtime.

2 Motivation & Challenges
2.1 Illustrative Example: Matrix Multiply Server

We illustrate the benefits and challenges of specialization
with an example system: a server executing square matrix
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Machine / Workload N=1024 N=256 N=64

IceLake 32 32 32
IvyBridge 16 16 4
CoffeeLake 32 4 4
AlderLake-p 32 4 2
AlderLake-e 64 4 4

Table 1. Optimal configurations for our block matrix multi-
ply, across 5 hardware platforms and 3 workloads.

multiplications for clients. To optimize cache locality we
use a blocked matrix multiplication [9, 62, 63]. We identify
one key workload parameter, N the matrix size, and a key
configuration parameter, B the block size.

Code specialization improves performance. Both pa-
rameters offer a substantial opportunity for optimization
through specialization. Unsurprisingly, we find fixing B as
a compile-time constant instead of leaving it a variable im-
proves throughput by up to 6.5%, by enabling the compiler
to unroll and vectorize the inner loops. Note that B is an in-
ternal parameter that may affect performance, but any valid
choice results in correct behavior with every workload. Sim-
ilarly, assumptions about the workload, N, can also simplify
the algorithm, e.g. by assuming that N is a multiple of B we
avoid the need for copying and 0-padding partial blocks.
Optimal configuration depends on workload and HW.
We now compare different block sizes for different workloads
(matrix sizes) on 5 different processors. As Table 1 shows,
different block sizes yield optimal performance for different
workload and processor combinations. Picking a fixed B
ahead of a practical deployment in a dynamic environment
will not yield optimal performance. Moreover, even with
single single-size workloads it is difficult to predict what
block size will be ideal for a concrete processor.

2.2 Code Specialization is Effective but Complex

There is a long line of prior work that has established the
performance and efficiency benefits of specializing code, and
systems code more specifically. For example, interpreted lan-
guages may generate specialized instances of functions with
constant parameters and optimize them accordingly [16, 40].
This is a generic optimization and typically done automati-
cally and transparently by the runtime. Other optimizations
are specific to individual systems and concrete concerns,
such as inlining small table lookups in software network
functions as if statements [43]. As most compiler optimiza-
tions, these approaches are typically guided by simple heuris-
tics around local metrics (e.g. frequency of the same parame-
ter value, or table size) based on developer intuition.

Specialization effects often cascade. A key aspect of spe-
cialization techniques is that the effects combine. For exam-
ple, PacketMill [22] first de-virtualizes function pointers [36]
for the Click modular router [37], and then based on this
further eliminate dead code and data structure fields. The

analysis for the latter optimization is impossible before de-
virtualization as the virtual calls prevent the compiler from
analyzing the complete packet handling code.

2.3 Specialization is Challenging in Practice

(C1) Developer Complexity. A key barrier to specialization
is the increased complexity for developers. Developers now
need to reason about what assumptions will definitely hold
and can help specialize the system for better performance.
Next the developer needs to implement the required special-
ization and evaluate it. In practice, this frequently results in
having to maintain multiple code versions. Unsurprisingly,
is complex but also laborious and frequently also frustrating,
since it is often an iterative hit-and-miss process.

(C2) Loss of Generality. This is further complicated since
specializations may hurt performance or break the system
when the underlying assumptions are violated. For example,
a network function may be processing 99.999% of packets
with simple processing and data structures that perform
vastly better with specialization. However, specializing the
system to this class of packets, and thereby simplifying code
and data structures breaks handling of the rare 0.001% case.
The need to gracefully handle rare or unexpected cases forces
developers to specialize conservatively.

(C3) Optimal Specialization Choices. Finally, as we have
seen above, determining the right choices to actually yield
optimal overall system performance is a challenge. Modern
system performance is a complex product of the emergent
behaviors across all system components, it is also not feasi-
ble for developers to distill this into simple local cost models.
Optimally specializing systems statically is fundamentally
impossible since concrete workload and hardware parame-
ters affect these choices, and both are dynamic in practice.

3 Approach

We aim to enable practical specialization of systems for im-
proved performance and efficiency. Our key idea to enable
this given the challenges above, is to automatically explore a
space of possible specializations provided by the developer at
runtime based on observed overall system performance.
Simple specialization with simple annotations. We first
observe, that while developers struggle with determining
optimal specializations and implementing a system based
on them, it is much easier for developers to suggest possible
specialization assumptions. We thus enable developers to an-
notate system code with simple annotations to this end. Fig-
ure 2a shows an example for the matrix multiplication server
above. Additionally, developers can also provide LLVM trans-
formations to perform intrusive app-specific specializations,
and thereby generate further candidate configurations in the
overall specialization space. Crucially, we do not rely on the
developer to filter or rank specializations.
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Figure 1. Architecture of a Iridescent-specialized system.

Guarded specialization with a fall-back. Later, when au-
tomatically instantiating specialized system versions through
JIT compilation, we inject guard conditions into the code
and fall back to the unspecialized version of the system code
for that invocation. While triggering this guard incurs over-
head, it does ensure correctness. And if the guard triggers
sufficiently rarely, in combination with the benefit for the
common case, the specialization may still be a net win.
Online exploration guided by developer policy. Finally,
we completely forgo cost models and heuristics for predicting
which choice in the specialization space is optimal, and in-
stead explore different points online as the system is running.
Our guards ensure that the system always behaves correctly
in this process. We rely on the developer to provide a policy
for guiding this exploration. The developers control when
to explore which points, manually, through existing auto-
tuning solutions or by leveraging simple search strategies
from our library. A key task of this policy is comparing the
(application specific) overall system performance metrics, e.g.
request throughput, when running different specialization
points. Overall system performance metrics also implicitly
factor in any overheads, e.g. triggering specialization guards
for some calls. This ensures that the system converges to the
optimal specialization point for the concrete combination of
dynamic system, workload, and hardware conditions.

4 Iridescent Design

We now present the design of our approach in Iridescent.

4.1 Anatomy of a Iridescent System

A key component of the Iridescent mechanism is to modify
code of the running system. Since Iridescent targets perfor-
mance critical systems not implemented in managed lan-
guages, this is non-trivial in general. We observe though
that typical performance critical systems code are almost ex-
clusively architected with an outer loop handling a sequence
of events, such as processing requests or data elements. We
leverage this structure for pragmatic specialization, by re-
quiring developers to separate the system code into two parts
(Figure 1): (i) the fixed code, including initialization and outer
loop; (ii) the performance-critical event handler code. The
developer compiles the fixed code as before, but integrates
calls to the Iridescent API (Table 2). For the handler code,
the developer adds lightweight Iridescent specialization API

void matmul(u64 %L, u64 *R, u64 *0, int N, int B) {

B = spec_enum("B",B,2,4,8,16,32,64);

N = spec_general("N",N);

for (int kk = @; kk < N; kk += B)

for (int jj = @; jj < N; jj += B)
for (int i = @; i < N; i++)
for (int jjj = jj; J3j < 3Jj + B; jii+®)
for (int kkk = kk; kkk < kk + B; kkk++)
M3[i*N+jjj] += LLi*N+kkk] * R[kkk*N+jjjJ;

(a) Handler Code

Iridescentrt("handler_code.11");
void spec_policy() {
Conf N_cs[2] ={{}, {{"N", 2563}};
do { for (c : cartesian(rt->spec_space(), N_cs)) {
rt.specialize(c); tput_counter = 0;
sleep(...); // Sleep for some time to monitor
if (tput_counter > best) {
best = tput_counter; best_c = c; } }
rt.specialize(best_c);
} while(every Tmin);
}
int main() {
auto *matmul = rt.handler("matmul");
rt.reg_opt_pipeline(opt_passes);
launch_thread(spec_policy);
while(true) { // Main processing loop
Req *req = get_req(); Resp *res = new Resp();
matmul(req.A, req.B, res.C, 2, req.N);
tput_counter++;
}
}

(b) Fixed Code

Figure 2. MMulBlockBench microbenchmark

Iridescent Specialization API

Enumeration spec. point (x€...)
Range spec. point (I<x<h)
Policy-controlled spec. point
Specialization assumption
Custom spec. point

spec_enum(lbl, x, ...)
spec_range(lbl, x, 1, h)
spec_generic(lbl, x)
spec_assume(1bl, cond)
spec_custom_*(1bl, ...)

Iridescent Policy API

Initialize runtime

Get specialized handler
Obtain code spec. space
Choose specialization; ¢ maps
spec. point labels - values
Add app specialization
Modify codegen optimizations

Iridescent(handler_ir)
.handler(h)
.spec_space()
.specialize(c)

.add_custom_spec(n, gen)

.customize_opts(passes)

Table 2. Iridescent API overview.

calls and compiles to intermediate representation, LLVM IR
specifically. In the fixed code, the developer obtains function
pointers for the handlers through the Iridescent policy API,



and calls these as before. During dynamic code generation,
Iridescent will link handlers against symbols in the fixed
code, to enable calls and accesses to global state. Since Iri-
descent will repeately rebuild handlers, Iridescent requires
that the handler code does not include definitions of global
variables that must be preserved. The developer has to move
all global state to the fixed code, and reference from the han-
dlers. Figure 7 illustrates this with our matrix multiplication
server running example.

4.2 Defining Specialization Space

The developer defines the specialization space through spe-
cialization point annotations in the handler code. At runtime,
Iridescent replaces these annotations with specialized code,
instrumentation, or disables them, guided by the policy. Iri-
descent offers three types of specialization points:

Value Specialization Point. A value specialization point
signals to Iridescent that the handler code could be special-
ized to a constant for the wrapped expression. spec_enum indi-
cates the value could be one of the specified values; spec_range
instead specifies a range; while spec_generic leaves it to the
policy to determine possible values.

Assumption Specialization Point. This point provides a
possible specialization assumption to Iridescent. The condi-
tion is a boolean predicate that Iridescent can provide to
compiler optimizations to further optimize, through LLVM’s
builtin 11vm.assume. Crucially, the assumption need not al-
ways hold, unlike for the LLVM intrinsic where incorrect
behavior results, Iridescent catches this with its specializa-
tion guards.

Custom User-Defined Specialization Point. These spe-
cialization points, annotated through spec_custom_x, invoke
developer-defined specializations registered in the fixed code
through add_custom_spec. An example is generating an if-else
chain as a special-case fast-path for an expensive data struc-
ture lookup or computation (§5.1).

4.3 Defining Specialization Policy

The developer implements the specialization policy in the
system fixed code using the Iridescent policy APIL Through
the policy, the fixed code decides what to specialize and when.
Iridescent provides a simple periodic exhaustive search strat-
egy for simple cases as a library routine, with a simple call-
back for providing the strategy with the system performance
metric. But we also found in our evaluation there are typ-
ically system-specific insights to more intelligently decide
when to trigger exploration, and how to prioritize different
configurations. As a result, we expect that most systems
will implement custom strategies maximizing overall system
performance, using the Iridescent building blocks.

Figure 2b shows how through a simple specialization pol-
icy, developers can control the exploration and selection of
specializations. In line 4, the spec_space API returns the spe-
cialization space generated by the annotations in the handler

code. Here, we then combine this space, with other specializa-
tions through a cartesian product to obtain a complete set of
specializations. In lines 4-8, the fixed code automatically tries
out the different combinations in the set of specializations
and chooses the best performing combination. To choose
the best, the specialization policy uses the target end-to-end
performance metric, in this case the throughput. Here, we
then trigger re-exploration at a fixed-time interval to adapt
to workload changes.

The specialization policy provides developers fine-grained
control for specialization. This also includes enabling instru-
mentation for specialization points to dynamically identify
opportunities for specialization. For example, the policy for
the matrix multiplication server may specify that the matrix
size, N, should only be specialized if >70% of the workload
has the same value. The developer can also optionally config-
ure custom optimization passes through the customize_opts
API to further modify code generation.

4.4 Specialization Runtime

The specialization runtime has two key components: (i) the
specializer generating the specialized code by applying se-
lected specializations; (ii) the JIT compiling and optimizing
the modified specialized code and making it available to the
fixed code.

4.4.1 Specializer. The specializer generates the special-
ized intermediate representations for the handler code. It
operates at function granularity, and generates versions of
functions with specialization points replaced depending on
the chosen specialization configuration.

For each specialization point, Iridescent performs the fol-
lowing actions, depending on the configuration the policy
supplied for this point. If the policy marks a point as disabled,
the Iridescent specializer simply removes the annotation and
replaces it by the original value, or skips over assumption
points. To specialize an enabled value specialization point,
Iridescent replaces the specialization point annotation in the
handler code with the constant value supplied by the policy.
By default, the specializer will also insert a specialization
guard, which the developers may explicitly disable. To spe-
cialize a custom specialization point, the specializer replaces
the specialization point with the custom source code pro-
vided by the previously registered handler for that custom
specialization point type. The recompilation process then
enables typical compiler optimization passes to take effect
that now operate with the new constants.
Instrumentation. Some specialization policies benefit from
collecting runtime data to generate possible specialization
configurations. To support such data collection, the special-
izer can optionally enable instrumentation for each special-
ization point. For a specialization point with instrumentation
enabled, Iridescent additionally generates code for collecting



and storing the observed actual values. The policy retrieves
this information included in the result of the spec_space call.

4.4.2 JIT. Compiling the specialized code. The special-
ization runtime adds the specialized code generated by the
specializer to the JIT. The JIT compiles the code and runs
the developer-specified pipeline of optimization passes, in-
cluding any custom developer-provided optimization passes,
to generate an optimized version of the specialized code. By
default, the JIT applies the default 03 optimization pipeline
if the developer has not provided a specific pipeline. In addi-
tion, the JIT also keeps a copy of the original, non-specialized
version of the specialized function. This generic function acts
as the fallback option for situations where the specialized
function is not applicable.

Using the specialized code. To use the specialized han-
dlers, the fixed code obtains function pointers from the spe-
cialization runtime. The fixed code then uses to invoke the
specialized handlers. If no specialization has been enabled
the handlers default to the non-customized generic version
of the functions. For simplicity, the fixed code only needs to
do this once at the very start of execution. The JIT creates a
trampoline function which calls the most recent specialized
version of the function. The trampoline function is stored at
a fixed address and does not change across runtime updates.

4.4.3 Correctness with Specialization Guards. Irides-
cent by default inserts a runtime check called a specialization
guard for an enabled specialization point. The guard can be
disabled by the policy. The specialization check ensures that
the condition for using the specialized version of the code
holds during execution. For this, specializer inserts code to
perform an early exit from the specialized version of the code
on check failure by throwing an exception. The JITs tram-
poline function catches the thrown exceptions and re-routes
the control flow to the original non-specialized version of
the function transparently without exposing the exception
to the fixed code.

Restoring state and side effects. To ensure correct restora-
tion of the state, the specializer will call a user-defined cleanup
function for reversing any side-effects before throwing the
exception. It is critical to note here that not all side-effects are
reversible (e.g. sending a packet to a neighbor), so Iridescent
performs a best-effort clean-up.

4.5 Prototype Implementation

We have implemented Iridescent in 5K lines of C++. Our
implementation uses the LLVM IR and JIT [38] to generate
the specialized code at runtime. The specializer is imple-
mented as a set of LLVM transformation passes that operate
on LLVM IR of the instrumented handler code.

5 Case Studies

For our evaluation we use four open-source systems and
libraries as our evaluation target and the MMulBlockBench
microbenchmark. We explain each system along with the
changes we made for integrating Iridescent below.

In addition to the benchmarks, we also implemented a
generic version of the hot key specialization of Morpheus [43]
called the fast-path specialization. The fast-path specializa-
tion works in two phases: (i) the instrumentation phase: Iri-
descent inserts instrumentation code that samples (sampling
rate selected by the user) invocations of the target function
to find the most popular inputs to the function along with
their calculated outputs; (ii) the specialization phase: Irides-
cent updates the target function to have a specialized if-else
chain where the top-N inputs along with their outputs are
converted into a series of if-else checks to avoid paying the
cost of re-computation for the heavy-hitting inputs. The
value of N maybe user provided or it could also be config-
ured as a runtime constant specialization point. If the input
does not match any of the branches in the if-else chain, then
the computation simply defaults to the generic version.

5.1 LibLPM

LibLPM [49] is an open-source Longest Prefix Match (LPM)
library written in C with built-in support for IPv4 and IPv6 ad-
dresses. LPM is an important operation that is used in packet
routing for finding the best and most accurate matches in
routing tables for incoming packets.

To integrate LibLPM with Iridescent, we create two differ-

ent specializations - (i) LibLPM-FP, and (ii) LibLPM-NI.
LibLPM-FP specializes the lookup function to add a fast-
path specialization point. The target is the lookup function
where the input-output pairs of the lookup function execu-
tions are captured.
LibLPM-NI creates a code-generation specialization point
in the LPM library. The code-generation specialization point
generates a new version of the lookup function which gen-
erates a nested-if-else tree of checks consisting of prefix
match checks for the incoming address for each lpm entry.
The nested-if-else tree starts at the least specific matching
rule (based on prefix length) and progressively checks for
the most specific matching rule until it can’t find one any-
more. By performing this code generation specialization, the
lookup function can embed the prefix rules directly into the
codebase allowing for more optimized checks.

We also create an additional specialization, LibLPM-NI-FP,
which combines the previous two specializations by adding
a fast-path specialization point in the generated nested-if
specialized lookup function.



5.2 TAS

TAS [35], TCP acceleration as a service, is a lightweight soft-
ware TCP network fast-path that is optimized for common-
case client-server RPCs. TAS executes common-case TCP
operations in an isolated fast path that uses DPDK [20], while
handling corner cases in a slow path.

To integrate TAS with Iridescent, we convert the BATCH_SIZE

as a runtime constant specialization point. In TAS, the BATCH_
SIZE variable is used in three different scenarios: (i) to deter-
mine the number of packets to be read from the NIC, (ii) to
determine the number of packets read from the application
queues, and (iii) to determine the number of packets read
from the queue manager. For more fine-grained control, we
convert each of these usage instances of the BATCH_SIZE as
three separate runtime constant specialization points - (i)
rx_batch, (ii) queues_batch, and (iii) gman_batch.

5.3 FastClick

FastClick [5] is an extended version of the Click Modular
Router [37] with improved Netmap support and DPDK sup-
port for running the modular router in userspace. A FastClick
(or Click) router is assembled from individual packet pro-
cessing modules called elements. Each element implements
simple router functions such as packet classification, sched-
uling, routing, and interacting with network devices. Users
can configure the router with different element pipelines to
achieve different router behaviors.

To integrate FastClick with Iridescent, we modify the Lin-
ear[PLookup element of the FastClick to create a Iridescent-
enabled LinearIPLookup element. The original element uses
a linear search algorithm to find the best matching route for
an incoming packet based on the routine table. We modify
the packet-processing function of the LinearIPLookup ele-
ment to add a fast-path specialization point. The target of
this specialization point is the internal lookup function of
the LinearIPLookup element.

5.4 Network Functions

Network Functions is a suite of the network functions that
include DPDK and ebpf implementations of common net-
work functions such as a NAT, Router, policer, among others.
These functions have been developed and used for evaluation
by various research projects such as Pix [30] and Vigor [65].
We extract the implementations from the Pix artifact [29].
To integrate the Network Functions with Iridescent, we
convert the BATCH_SIZE used by the DPDK version of these
functions into a runtime constant specialization point. In the
network functions, the BATCH_SIZE controls the number
of packets that are read from a network port at a given time.

6 Evaluation

In this section, we evaluate how well Iridescent improves per-
formance of systems by enabling online specializations. We

Machine Constant (c) Variable (v) Benefit
(Processor) (cycles/op) (cycles/op) (v/c)
IceLake 175297 284944 61%
IvyBridge 250434 661295 246%
CoffeeLake 168817 581130 348%
AlderLake-p 173350 583724 336%
AlderLake-e 206924 557572 269%

Table 3. Impact of turning s as compile-time constant at
runtime for N=64 for different hardwares (Table 1)

showcase how we can use online specialization with Irides-
cent for three use-cases: (i) enabling compile-time optimiza-
tions at runtime; (ii) enabling incremental specializations at
runtime; (iii) design exploration at runtime. We answer the
following questions:

e Do Iridescent-enabled compile-time optimizations at
runtime improve performance? (§6.2)

e Can Iridescent find an optimal design through explo-
ration at runtime under dynamic conditions? (§6.3)

o What is the cost of using Iridescent? (§6.4)

6.1 Experimental Setup

Testbed. For our experiments, unless otherwise stated, we
configure two identical machines as client and server. They
are directly connected with a pair of 100 Gbps Mellanox
ConnectX-5 Ethernet adapters. Both machines have two Intel
Xeon Gold 6152 processors at 2.1 GHz, each with 22 cores
for a total of 44 cores and 187 GB of RAM per machine. We
run Linux kernel 5.15 with Debian 11.

6.2 Compiler Optimizations at Runtime

Compile-time optimizations often produce more performant
code. These compile time optimizations include constant
propagation, loop unrolling, dead-code elimination, and use
of vectorization instructions. With Iridescent, we can enable
compile time optimizations at runtime.

Iridescent enables Cascading Compiler Optimizations.
First, we show the potential benefits of enabling compile-
time optimizations at runtime for the MMulBlockBench mi-
crobenchmark shown in Table 1. Specifically, for the work-
load N = 64, we compare the performance of keeping the
optimal block size,B, as a runtime parameter to that of con-
verting it into a constant at runtime using Iridescent. For both
configurations, we execute the function for a fixed number
of times and measure the amount of cycles spent for execut-
ing 1 execution of the function. Table 3 shows the benefit
for converting B into a compile-time constant for different
hardwares. For each hardware, we get at least 50% reduction
in consumed cycles, and greater than 240% reduction in con-
sumed cycles for four of the five operating conditions. This
improvement is a direct impact of Iridescent’s specialization
allowing different compiler optimizations to cascade and
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combine together to produce a more efficient version of the
code. In this specific case, the specialization of B allows the
JIT compiler to first easily unroll the loops in the matrix mul-
tiplication function and then replace multiple instructions
with more optimized vector instructions.

Iridescent incorporates existing specializations. To show-
case Iridescent’s ability to easily incorporate existing runtime
specializations, we implement the map hot-keys specializa-
tion of Morpheus [43] as a fast-path specialization point in
packet processing function of FastClick’s LinearIPLookup
element. We configure the fast-path specialization point with
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Figure 5. Change in overall throughput of the FastPath
router with Iridescent-specialized Linear[PLookup element
for different fast-path hit rates.

a 0.01% sampling rate for the instrumentation phase. We exe-
cute the FastPath router on 1 machine and treat that machine
as the Device Under Test and execute Pktgen to execute an
open-loop workload to generate packets with destination
ip addresses from a given set of IP addresses. We repeat
this experiment for different sizes of the routing table in the
LinearIPLookup as well as different sizes of the fast-path to
measure the throughput of the router under different con-
ditions. Figure 4 shows that Iridescent achieves upto 15x
improvement in the throughput based on the size of the table
at 100% fast-path hit rate. The improvement increases with
the increase in the table size as for larger tables, more linear
scans are required. Figure 5 shows that for a router, with a
routing table of size 1000, even with a 50% fast-path hit rate,
Iridescent achieves approximately 5X improvement in the
throughtput. The improvement increases with the increase
in the fast-path hit rate.

Iridescent enables custom specializations. Next, we show
the potential benefits of enabling custom compile-time opti-
mizations for LibLPM. For this experiment, we set up eleven
different configurations resulting from a combination of five
different LPM table sizes and two different workloads - Work-
load A and Workload B. In Workload A, the incoming IP
address is an IP address that matches a very specific prefix
entry in the routing table. In Workload B, the incoming IP
address is an IP address that only matches the LPM prefix
entry of prefix length 0. Thus, Workload A and Workload
B cover the best and worst cases respectively for the LPM
lookup function. We execute these workloads on seven dif-
ferent specializations - (i) Baseline: no Iridescent-enabled
specialization, (ii) Instrumented: Iridescent-enabled special-
ization which captures the most popular inputs (with a 10%
sampling rate); information collected by this configuration
is used by Iridescent for the fast path specializations, (iii)
LibLPM-FP-A: fast-path specialization of size 1 specialized
for Workload A, (iv) LibLPM-FP-B: fast-path specialization
of size 1 specialized for Workload B, (v) LibLPM-NI: the
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Figure 6. Automatic Exploration and Specialization of dif-
ferent configurations for TAS

nested-if code generation specialization, (vi) LibLPM-NI-FP-
A: Combination of LibLPM-NI and LibLPM-FP-A, and (vii)
LibLPM-NI-FP-B: Combination of LibLPM-NI and LibLPM-
FP-B. Figure 10 shows the cycles required for completing
one execution on average of the Ipm lookup function for all
the different combinations of configurations and specializa-
tions. For Workload A, all three of LibLPM-FP-A, LibLPM-NI,
LibLPM-NI-FP-A specializations achieve upto 6X reduction
in cycles per execution. However, unlike the LibLPM-FP and
LibLPM-NI-FP-A specialization, this LibLPM-NI specializa-
tion does not require an additional instrumentation phase to
sample executions to find the optimal candidates for the fast
path. LibLPM-NI improves performance across the board for
all workloads by upto 6X. Despite this performance boost,
LibLPM-NI is not the best specialization for Workload B. For
Workload B, the best optimizations are the *-FP-B specializa-
tions as they get upto a 30X performance boost.

6.3 Runtime Design Exploration

Iridescent enables runtime design exploration. We show
runtime design exploration for TAS [35]. We setup our ex-
periment with a typical server-client setting, with the server
providing an echo service. The client is multi-threaded and
executes an open-loop workload of 64 byte packets. Both the
server and client are enabled with TAS. In our experiment,
we modify the server-side TAS and measure the through-
put of the server side TAS as millions of packets processed
per second. With Iridescent we explore different values of
the rx_batch in the TAS source code on the server side.
Figure 6 shows how Iridescent can automatically select the
best-configuration on the server side by automatically ex-
ploring the different values of the batch size for different
locations in the source code.

Iridescent can automatically adapt to changing work-
loads. To show that Iridescent can automatically adapt to
workloads, we first use the MMulBlockBench microbench-
mark. We execute a Iridescent-enabled version of the func-
tion and a non-Iridescent enabled baseline version. In the
non-baseline version, the block size s is a runtime param-
eter. In the Iridescent-enabled version, Iridescent explores
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Figure 7. Automatic Exploration and Specialization of MMul-
BlockBench for two different workloads

different values of s by specializing the value in the code
and converting s into a compile-time constant. We execute
each version with two different workloads in succession,
each lasting one minute. We measure the overall throughput
(executions/s) for both configurations. Figure 7 shows how
Iridescent can easily explore the different block sizes and
find a performant configuration as compared to the baseline.
Moreover, Iridescent can automatically detect the workload
change based on the drop in throughput and restart the A/B
testing process.

Next, we show runtime design exploration and adapta-
tion for two different network functions from vigor [65].
We setup our experiment with a packet generator on one
machine and a device under test (DUT) on the other ma-
chine. We use two ports for the DUT. The first port acts
as the internal facing port where as the second port as the
external facing port. The DUT runs executes the specific
network function for every incoming packet generated by
the packet generator. The network function implementation
has different execution pathways for packets depending on
whether they arrive on the internal port or the external port.
The network function is enabled with the Iridescent special-
ization policy to trigger an exploration phase to find the
best performing BATCH_SIZE whenever there is a change in
the workload. We execute the experiment in two phases: in
the first phase, packets arrive only on the external facing
port and in the second phase, packets arrive only on the
internal facing port. Figure 8 shows the results for the NAT
and the Policer network functions. Iridescent can find the
best performing configuration in each phase even if the best
configuration is different.

Iridescent transparently enables exploration-based adap-
tation with custom specializations. We show runtime de-
sign exploration for FastClick LinearIPLookup. We execute
the FastPath router on 1 machine and treat that machine
as the Device Under Test and execute Pktgen to execute an
open-loop workload to generate packets with destination ip
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Figure 9. Optimal Fast Path size exploration with Iridescent

addresses from a given set of IP addresses. At the 1 minute-
mark, we completely switch the destination IP address set
with no overlap with the initial address. The router is config-
ured with a Iridescent specialization policy that triggers an
exploration whenever it detects a large change (> 25%) in the
measured throughput. Figure 9 shows how the throughput

happens off the critical path so its not a performance bottle-
neck. However, this cost does dictate the propagation delay,
i.e., the time taken for the specialized version of the code to
be available for the execution.

To analyze how the compilation time changes with the
increase in the size of the JIT, we consider the code generated
by Iridescent for the LibLPM-NI specialization. Figure 10
shows the change in the compilation time for the LibLPM-NI
specialization as a function of the number of the elements in
the Ipm lookup table. The compilation time increases linearly
with increase in the number of lpm entries. This is because



System JIT Compilation Time (ms)
MMulBlockBench 10+1
LibLPM-FP 72+9
LibLPM-NI Varies with Ipm size
LibLPM-NI-FP Varies with Ipm size
Network Functions 98 +5
TAS 340 £ 5
FastClick 11+1
Table 4. JIT compilation time
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Figure 10. Compilation Time of LibLPM-NI (nested-if spe-
cialization) as a function of the number of elements in the
LPM lookup table.

System Handler Spec Policy
Annotations (LoC) (LoC)

MMulBlockBench 2 47

LibLPM 4 9

Network Functions 5 43

TAS 8 38

FastClick 5 88

Table 5. Lines of Code change required to integrate Irides-
cent

Iridescent generates one basic block in the specialized code
for each Ipm entry. As a result, the code size generated by
Iridescent grows linearly with the total number of entries.
Developer Cost. Table 5 shows the lines of code changes
required to integrate Iridescent specializations into the target
systems. For all cases, the lines of code required are fewer
than 100. Implementing the custom LPM specialization only
required 162 lines of code for enabling the custom user-
defined LPM specialization.

Instrumentation Overhead. To measure the overhead of
adding instrumentation, we devise a microbenchmark called
SimpleBench, consisting of two very simple functions, f and
g. f computes the square of the input and g computes the
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Figure 11. Impact of sampling rate on instrumentation over-
head for LibLPM-FP configuration for Workload B

product of its two inputs. For f, we add a general specializa-
tion point for its input a. For g, we add a range-based spe-
cialization for its second input b. For both the specialization
points a and b, we first execute their respective functions, f
and g, in normal mode and then use Iridescent to add instru-
mentation. We execute each configuration one million times.
As a baseline, each function on average takes upto 8 cycles
per execution in normal mode. For a, which is a general spe-
cialization point, adding instrumentation adds an overhead
of around 450 to 500 cycles per execution. For b, which is a
specialization point designed for more efficient instrumen-
tation for specialization points with values in fixed ranges,
adding instrumentation adds an overhead of around 1 extra
cycle per operation. When possible, Iridescent users should
opt to use the more efficient specialization point. However, it
is expected that this might not always be possible and in most
cases users would be forced to use the general specializa-
tion point, Iridescent allows users to specify a sampling rate
to avoid incurring the instrumentation cost for low-latency
computations. Figure 11 shows how decreasing the sampling
rate for the LibLPM-FP configuration when executed with
Workload B can decrease the instrumentation overhead.

Specialization Guards and Failures. To measure the cost
of specialization guards and failures, we use the SimpleBench
microbenchmark. For function f, we use Iridescent to spe-
cialize the value of a and generate two different versions.
In the first version, we disable specialization check at the
entrypoint of f. We then execute this version of the function
with the specialized value as input one million times. Each
execution of this version takes 7 cycles. In the second version,
we enable the specialization check at the entrypoint of f. If
the specialization check fails, i.e. the input value of a does
not match the specialized value of a, then this version of f
throws an exception that is caught by Iridescent-inserted
trampoline code which subsequently calls the generic ver-
sion of the function. We first execute this version of the
function with inputs such that the specialization guards al-
ways pass. This check adds an extra cycle per execution of



the function. Next, we execute this version of the function
with inputs such that the specialization guards always fail.
This results in exception handling behavior which adds ap-
proximately 5000 cycles of overhead per execution. Thus, the
raw cost of a specialization check is 1 extra cycle whereas
that of a specialization failure is approximately 5000 cycles.

7 Related Work

Runtime Specializations. Runtime Specialization tech-
niques [14, 15, 17, 27] produce more efficient versions of
the code by exploiting values and invariants that only exist
at runtime. Today, these specializations manifest as optimiza-
tions either through binary rewriting [2] or as optimizations
in JIT compilers for interpreted languages in the form of
Type Specialization [12, 13, 45] for specializing the types of
data for dynamically typed languages, or as Value Special-
ization for interpreted languages [16, 40] where the param-
eter values of hot functions are converted into constants.
These specializations may be optionally applied depending
on the computation context [23, 31, 48]. generic optimiza-
tion and typically done automatically and transparently by
the runtime based on internal cost models which may not
be appropriate for specific application contexts. Moreover,
these specializations are limited in scope and usually do not
take the system’s end-to-end performance into consideration
when applying these specializations.

Transparent Dynamic Optimization (TDO) techniques
such as Dynamo [4], The Transmeta Code Morphing Soft-
ware [18], DynamoRIO [7], optimize code at runtime with-
out requiring any modifications by capturing and optimizing
traces (sequences of instructions) that are commonly exe-
cuted. These optimization techniques are broadly applica-
ble optimization techniques that target a broad spectrum.
As a result, do not typically leverage any domain-specific,
situation-specific optimizations as these techniques do not
have a way of obtaining that knowledge.
Domain-Specific Specializations. In recent times, value
specializations have extended beyond interpreted languages
for specific use cases such as value specializations for GPU
kernels [24], or through increment specializations for packet
processing frameworks [22, 43, 50]. Iridescent provides a
general framework for configuring, applying, exploring, and
selecting such specializations at runtime.
Feedback-Driven Optimizations (FDO). FDO [11, 18, 28,
45, 47, 52, 58], also known as PGO (Profile-Guided Optimiza-
tions), are typically multi-run optimizations consisting of
multiple executions of the program to be optimized. First the
optimization collects relevant metrics from a benchmarking
run and then uses these metrics to generate optimized ver-
sions of the code. FDO techniques in their current form lack
flexibility as they are specialized to work well for only one

11

workload (the workload it was trained on). FDO optimiza-
tions typically do not adapt well to change in workload or
environment settings.

AutoTuning. AutoTuning allows developers to automati-
cally find the best values of various configuration param-
eters at runtime without requiring the developers to man-
ually try all possible combinations. Similar to FDO tech-
niques, AutoTuning techniques [57, 60] often perform tun-
ing through trial runs to find optimal values for different
parameters. Some AutoTuning techniques such as OPPer-
Tune [55] and SoftSKU [56] apply the AutoTuning paradigm
of measurement-driven search at runtime without any trials.
However, these techniques are limited to environmental pa-
rameters and knobs as they work transparently with respect
to the deployed application. Iridescent enables the AutoTun-
ing paradigm of measurement-driven search at runtime to
find the best combination of specializations for the system.

8 Discussion

Debugging. Iridescent makes it harder for developers to
issues. This is because the generated specialized code is of-
ten very different to the code that was originally written
by the developer which makes it harder for the developers
to fully understand the execution sequences. This is fur-
ther exacerbated by the fact that different workloads may
lead to different specializations making it difficult to repro-
duce issues seen in production. Combining Iridescent with
monitoring and distributed tracing techniques could offer
developers a solution to their debugging problems.
Profile-Guided Optimizations at runtime. Iridescent en-
ables developers to utilize traditional PGO techniques at run-
time without requiring separate benchmarking runs. For ex-
ample, prefetch injection optimizations such as APT-GET [32]
and RPG2 [66] could be integrated with Iridescent in the fu-
ture.

Leveraging scale & ML for exploration. Several ML-based
techniques exist for tuning configurations [1, 10, 21, 32, 39,
41, 42, 50, 54, 55, 59, 60]. OPPerTune [55] provides access
to a plethora of ML techniques toolbox for automatically
searching through large configuration spaces. We believe
Iridescent can be integrated with OPPerTune to utilize state-
of-the-art exploration techniques. Moreover, Iridescent could
further incorporate SmartChoices [8] to allow different ML
techniques to apply to specific specialization points.

9 Conclusions

In this work, we presented Iridescent, a framework enabling
online workload-driven runtime specialization of systems
to improve performance. Iridescent provides a toolkit for
developers to implement system-specific specializations that
utilize runtime data and invariants to generate more perfor-
mant systems. Iridescent provides the necessary tooling for
developers to configure automatic runtime exploration of the



space of potential specializations to find the best perform-
ing configuration at each instant. By combining developer
insight with automated compiler optimizations, Iridescent
enables systems to adapt efficiently to changing workloads
and environments with minimal manual effort to improve
performance.
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