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Abstract
Energy requirements for datacenters are growing at a fast
pace. Existing techniques for making datacenters efficient
focus on hardware. However, the gain in energy efficiency
that can be achieved without making the applications energy-
aware is limited. To overcome this limitation, recent work has
proposed making the software running in datacenters energy
aware. To do so, we must be able to track energy consumption
at various granularities at the software level – (i) process level;
(ii) application level; (iii) end-to-end request level.

Currently, existing software energy-tracking techniques pri-
marily focus on tracking energy at the process or application
level; only a few techniques track energy at an end-to-end
request level. However, not tracking energy at an end-to-end
request level can lead to false software optimizations and
cause a decrease in energy efficiency.

To track energy at an end-to-end request level, we can
leverage end-to-end tracking techniques for other metrics
such as distributed tracing. However, we posit that energy
cannot be treated as just another metric and that we cannot
use existing frameworks without modifications. In this paper,
we discuss how energy is different from other metrics and
describe an energy-tracking workflow that leverages these
differences and tracing techniques in order to track energy
consumption of end-to-end requests.

1 Introduction

Datacenters deployed by cloud providers are responsible for
1% of the world’s total energy consumption [42, 63]. The
energy requirements of the cloud are growing unsustainably,
with estimates showing that cloud computing may require 8%
of the world’s energy by the end of the current decade [63, 68].
To ensure that datacenters and cloud computing do not waste
energy, we must strive to make datacenters as energy efficient
as possible [2].

Researchers have come up with various techniques for
increasing energy efficiency in datacenters. These tech-
niques include, but are not limited to, using alternative en-
ergy sources for powering datacenters [29, 49], smart cooling
of datacenters [66], swarm-based dynamic workload place-
ment [3, 22, 72], user-specified energy policies for datacenter
resource allocation [10, 14], dynamically adapting the energy
consumption of a datacenter network [33], and switching dat-
acenter networks to multichannel lightwave networks [21].

However, the energy efficiency that can be achieved without
considering application design is limited, and there have been
calls to make datacenter applications more energy-aware [2].
To do so, we must be able to track the energy usage and energy
provenance of applications [2]. A key decision when tracking
energy is deciding the granularity of measurements. We can
track energy at multiple granularities – hardware, process,
application, and end-to-end request – with each granularity
enabling finer-grained control of energy usage.

Current techniques focus on energy at the granularity of a
datacenter, hardware, process, or application (§3.2). However,
we believe that tracking energy of end-to-end requests is just
as important. In fact, as microservices and serverless archi-
tectures increase in popularity, tracking energy of a single
process (or even machine node) in isolation is not useful. As
a single request can visit thousands of service components,
focusing only on separate measurements can be misleading.
For example, if a service A compresses the data to be sent to
service B, the network energy consumption for transferring
the data will be reduced. However, the processor might con-
sume more energy for compressing the data at A, leading to an
increased overall energy consumption [54]. Thus, without the
full end-to-end profile of a request, system designers might
make incorrect decisions when trying to mitigate energy inef-
ficiency. Currently, to the knowledge of the authors, there is
no way of tracking energy at an end-to-end request level.

To attribute the energy usage for a given request, it is es-
sential to track the request across different components of
the application and system stack, and to measure the energy
spent processing the request by each of these components. In
principle we can use distributed tracing frameworks which
work at the end-to-end request granularity [76]; these tracing
frameworks record traces of the computations performed for
a request by different parts of the application across multiple
machines [6, 26, 79].

However, we posit that energy cannot be treated as just
another metric and does not trivially integrate with distributed
tracing frameworks. We identify three factors that distinguish
energy from other typical metrics used today: (1) energy con-
sumption is all-encompassing, i.e., every aspect of a system
from software to hardware consumes energy; (2) the same
computation running on different hardware, platforms, or en-
vironments, can vary substantially in its energy usage; (3) the
motivation behind measuring energy consumption is different,
as it is neither performance nor correctness driven; and (4)
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energy cannot be measured at extremely fine granularities
like, e.g., the performance counters of modern systems.

Based on these differences, we consider how to track energy
consumption at the end-to-end request level, and how existing
coarse-grained energy-measurement techniques might inte-
grate with end-to-end distributed tracing frameworks. In this
paper, we first motivate the use of end-to-end request level
energy tracking by describing potential use cases for lever-
aging measurement of energy consumption at the end-to-end
request level (§2); then, we compare and contrast the mea-
surement of energy consumption with other existing metrics
(§3), propose a model for tracking energy at the end-to-end
request level (§4), and finally provide future directions that
would help improve energy measurement (§5).

2 End-to-End Measurement Use Cases

We begin with several example use cases of how application
developers might leverage end-to-end energy tracking.

Design Exploration. Changing the design and implementa-
tion of an application can drastically impact its energy con-
sumption [46]. There has been significant work investigating
the effect of different designs on the energy efficiency of appli-
cations. These techniques analyze and optimize along various
dimensions and at various levels in the software stack. Ex-
amples include the choice of implementation language [67],
the application’s memory usage profile [36, 85], paralleliz-
ability of the application [83], usage and storing of data [53],
thread management [70], implementation choices for com-
monly used libraries [58, 71], use of compression [13], use
of software design patterns [52], and co-location of RPC ser-
vices [35].

Several use cases require the ability to measure energy for
small blocks of code internal to the application, that may
not directly map to a specific thread, core, or process [30].
Consider the compression example from §1; it is necessary to
measure the energy consumption of the compression logic to
compare the application with and without compression.

Energy Adaptive Computing. Metric measurements often
feed directly into control mechanisms at runtime, such as
request scheduling, load-balancing, and data quality decisions.
Energy is no different, and numerous prior works use real-
time energy measurements to make energy-based tradeoffs at
runtime [2, 4, 5, 9, 11, 12, 15, 27, 34, 45, 77, 87]. Similar to
recent work examining the use of machine learning models
to service requests faster at the cost of accuracy [31, 84],
energy-adaptive computing can also make decisions between
accuracy and energy consumption.

In the context of web applications, we define energy-
adaptive computing as the ability of the application to choose
different execution paths leading to potentially different out-
puts for the same input based on the energy already used by a
request. Under energy-adaptive computing, every application

component can decide what computation should be performed
for a request, in order to service that request within a given en-
ergy budget. A hypothetical example would be Google Search
providing accurate results limited to the first page of results,
and not pre-computing results for the subsequent page unless
explicitly asked, if a search request has already used a large
fraction of its energy budget. This specific use case is viable
because the click-through rate exponentially decreases as the
position of the result increases [8], leading to results on page
2 having a click-through rate lower than 7% [60, 69]. In a
similar vein, the Green framework reduced the energy con-
sumption of Bing Search by limiting the maximum number
of documents that each search query processed [5].

To be able to effectively control the energy usage of the ap-
plication at a per-request level to meet energy efficiency goals,
developers must have access to per-request energy consump-
tion information as well as an estimate of the total energy
used by the application at any given point in time during the
execution of the request.

Dead Execution Elimination. Like a router dropping pack-
ets when saturated, an application can immediately reject an
incoming request to minimize energy waste if a latency SLO
dictates that this request will be subsequently dropped. To
maximize energy efficiency, requests must be dropped as early
as possible in the execution pipeline.

Admission-control algorithms must accurately predict
the energy usage of an incoming request. To do so, they
require energy to be measured at an end-to-end request level
in tandem with aggregate energy-usage metrics at higher
granularities. In fact, basing admission-control decisions on
high-granularity energy-usage metrics alone may either result
in more requests being dropped than necessary, leading to
lower throughput, or fewer requests being dropped, leading
to energy waste.

The use cases described above have some underlying com-
monalities. All use cases need energy tracking at the end-
to-end request level, whilst also potentially having access to
hardware-level energy measurements. Some use cases record
measurements at runtime for later offline analysis and mod-
elling, correlating coarse-grained measurements with fine-
grained application traces; others use measurements imme-
diately for runtime decision-making and prediction; while
others use a combination of background modelling and run-
time decision-making. In all cases we face a similar challenge:
application-level and end-to-end request level energy usage
is not easily measured.

3 Measuring Energy

3.1 How do we measure systems?
A possible approach to measuring energy at an end-to-end
request level is to simply apply existing techniques and frame-
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works designed for other metrics. As mentioned in §1, metrics
are useful for a range of use cases and arise at different gran-
ularities, which we describe here.

Application. Metrics at the application level focus on per-
formance data such as utilization, saturation, and failure sig-
nals. Performance metrics give insight into how an applica-
tion is running. Common examples of performance metrics
are latency, throughput, and queuing time. Latency measure-
ments (e.g., average latency, latency distribution, and jitter)
are important for user-facing applications and are a common
service-level objective (SLO) [43, 64, 73]. At application
level, throughput is measured as the number of requests or
operations completed by the application. Saturation metrics
refer to system backlogging, e.g., the length of queues. Failure
signals track the correctness behaviour of the application; an
example is the total number of API call exceptions [51].

Process. Metrics of interest at the process level include CPU
utilization, memory utilization, bytes transmitted and received,
and thread count. Data from these metrics can be analyzed to
identify any outlier process consuming too much memory or
monopolizing the CPU.

Request. End-to-end request level metrics [44, 56, 79] give
a full-system view and help gauge how a user is impacted
(e.g., latency). Most metrics at the request level provide ele-
mentary information that is aggregated at higher granularities
to help diagnose system issues. At the request level, metrics
are mostly produced rather than consumed. For instance, the
end-to-end request latency is recorded at the request level,
while other granularities, such as the application, consume
and aggregate individual request latency measurements to
report the average latency of the application.

Hardware. Metrics at the hardware granularity are parsed,
aggregated, and analyzed by coarser-grained metrics to solve
a multitude of software or hardware issues. For instance,
network-level information on link failures, packet drops, and
flow helps to ensure successful network operation [86]; spikes
in CPU temperature are used to explain reduction of clock
speeds [23]; and, cache occupancy is used to detect side-
channel attacks [7].

3.2 How do we measure energy?

Energy Consumption Models. According to a recent sur-
vey of energy-consumption modelling techniques [18], prior
work proposes several methods to model the energy at a dat-
acenter level to make datacenters more energy-efficient [1,
16, 41, 57, 61, 74, 75, 82]. For instance, there are estimation
models to approximate the energy usage of servers [48, 62]
or of the entire datacenter network, to improve the energy
efficiency of the network [33, 50, 80]. Furthermore, there are
techniques modelling energy consumption as a function of the
resource usage of each application process [19], and others

requiring additional external hardware for measurements [24].

Energy Measurements. Measuring energy begins at the
hardware level before being aggregated or sliced at differ-
ent granularities. Modern Intel processors provide energy
measurements for servers through CPU registers that are up-
dated approximately every 1ms [39]. These counters provide
numbers for CPU and memory controller power consumption
based on the Running Average Power Limit (RAPL) [17].
RAPL measurements can then be further broken down at the
process and function levels.

Fine-Grained Measurements. Some libraries build upon
Intel’s RAPL measurements [39] to provide fine-grained
process-level measurements. For example, Scaphandre [37]
provides process-level metrics over large time periods sam-
pled at 1s intervals [38]. However, RAPL registers need to
be continuously polled for a higher temporal resolution; this
polling itself requires consumption of energy which distorts
the reported energy information due to the observer effect [81].
HAECER [30] uses RAPL to compute energy consumption
for short data paths, e.g., functions. HAECER requires inser-
tion of delay loops to synchronize the update rate of RAPL’s
counters. While promising, these approaches do not yet meet
the low latency demands of microservice applications that of-
ten have SLOs on the order of milliseconds or microseconds.
Other monitoring tools model energy consumption for func-
tions in a single machine based on raw information available
from hardware devices [65].

Power Containers [78] measure request-level power con-
sumption of, e.g., a webserver. Power Containers operate at an
OS level by using cheaper, high-frequency CPU, IO, and mem-
ory counters as a proxy for calculating finer-grained energy
consumption. The approach proposed by Power Containers
is promising, but has limiting assumptions about execution
structure (e.g., no application-level data dependencies across
threads) that do not broadly apply in modern RPC servers.

End-to-End Measurements. Prior work on distributed en-
ergy measurement has primarily focused on embedded sys-
tems [25, 47]. For example, Quanto [25] requires an energy
meter [20] to be attached to every piece of hardware and pro-
vides task tracking across different parts of hardware. How-
ever, Quanto is designed for embedded systems that use a
different, simplified programming model and run on nodes
with TinyOS [47]. By contrast, the hardware, concurrency,
and execution structure of datacenter applications are signifi-
cantly more complex.

3.3 How is energy different?

Energy consumption is all-encompassing. Energy con-
sumption is distributed across different system devices. Ev-
ery single system device contributes to the overall energy
usage. For instance, given the rising trends towards pro-
grammable devices (e.g., GPUs, TPUs, programmable ASICs,
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programmable switches) to discuss energy consumption we
need to consider the energy consumption of all of these de-
vices. Currently, there is no unifying abstraction that supports
measuring energy from all devices in a usable way at a request
level. By contrast, other system metrics can simply be mea-
sured end-to-end and do not require individual measurements
from each device in the system.

Energy consumption is dynamic. Many traditional met-
rics, such as resource consumption (e.g., disk, CPU, network),
depend only on the application logic or state – the same ap-
plication running on different hardware or platforms will not
vary significantly. By contrast, energy consumption can vary
significantly depending on factors at all levels, from hard-
ware to application: e.g., the specific hardware; co-location
with other applications [35]; physical proximity of distributed
components [35]; concurrent requests and tasks within the
application [70]; idleness of cores [28]; application-level op-
timizations like batching and compression [54].

The motivation behind measuring energy is different.
The motivation for measuring energy consumption differs
from the motivation for metrics in §3.1. In fact, most system
metrics are used to diagnose performance issues, maintain
quality of service, or debug correctness issues. For instance,
systems monitor the tail-latency of requests in order to main-
tain a certain quality of service; throughput numbers are col-
lected to diagnose performance issues in an application; error
or crashes are recorded to identify bugs. Unlike these metrics,
energy measurement is neither performance nor correctness
driven. Although energy measurement can be used for aggre-
gate analysis, energy measurement has found a very important
use in energy-adaptive applications that change behaviour
based on energy consumption data.

Hardware does not support fine-grained software-level
measurements. Unlike other metrics, commodity hardware
does not yet support energy tracking and measurement at fine-
grained software level granularities. For instance, Intel pro-
vides energy measurements in servers via its RAPL interface.
However, using RAPL presents three main disadvantages: (i)
the RAPL registers need to be continuously polled, which
consumes more energy; (ii) RAPL measurements can only
provide granularity up to 1ms [39, Vol.3,Ch.14]; (iii) RAPL
might be subject to side-channel attacks [40]. An alternative
to RAPL is to adopt specialized hardware that allows finer-
grained energy tracking. However, as accurate energy tracking
must cross process and machine level boundaries, we need
solutions at finer-grained software level granularities.

4 Modeling Energy Consumption of Individ-
ual Requests

Since it is not feasible to directly measure the energy con-
sumption of individual requests, we believe that any energy
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Figure 1: GNN model training workflow for energy estimation

tracking solution would need to adopt a hybrid-measurement
and model-based approach to estimate energy consumption.
To support the use cases in §2, we have to support energy
modelling in both an offline mode and an online mode. The
offline mode should provide energy measurements of a re-
quest for offline analysis. The online mode should track the
real-time energy usage of a request and predict the future
energy usage of that request at any point during the request
execution, while inducing minimal overhead.

4.1 Leveraging Distributed Tracing
As highlighted in §3.2, we cannot directly measure energy at
a fine-grained request level, but we can make estimates. Cur-
rent approaches, such as Power Containers [78], model the
energy usage of a request for a single server based on CPU,
IO, and memory counters. These counters are then combined
with coarser energy measurements to attribute consumption
to the tasks executing within a time interval. In the distributed
setting, Facebook has leveraged distributed tracing to obtain
CPU utilization information from each node in the system for
understanding the relationship between power consumption
and CPU utilization [28]. Each approach on its own does not
provide all the data needed to model energy consumption at
an end-to-end request level. However, by combining these
two approaches, we can obtain the relevant information for
modelling energy consumption. In particular, we leverage dis-
tributed tracing for data collection in three ways – (i) Metric
Collection, (ii) API Profiling, and (iii) Data Correlation.

Metric Collection. First, we use distributed tracing to col-
lect fine-grained system information (e.g., the topology of
services and machines visited by a request, hardware con-
figurations, execution time, bytes to write to storage or send
via network, and utilization of CPU, GPU, and other accel-
erators). Then, we leverage such information to compose
machine learning (ML) features that are highly correlated
with energy consumption. To do so, we employ feature en-
gineering, namely the process of selecting and transforming
data into features for supervised ML. Feature engineering
has proven to be crucial in applying ML to optimize system
behavior [32, 59].

API Profiling. For each request, we extract the list of APIs
executed by the request; for each API, we measure the energy
consumption locally, on each machine visited by the request,
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using Intel’s RAPL registers. From these measurements, we
derive a baseline for the energy consumption of each API.
Note that we are not using the Intel RAPL register during pro-
duction, but prior to production, to get fine-grained isolated
energy measurements.

Data Correlation. To generate meaningful predictions in
production, any model would need energy-usage measure-
ments of different parts of an end-to-end request. We leverage
existing infrastructure for context propagation in distributed
tracing [55] to propagate general tracing metrics as well as
energy measurements between processes, in order to build
a complete profile for each request. Each profile consists of
information on all the services visited by the request, plus the
order and dependencies among these services, which can be
used to build an invocation timeline or a service graph.

4.2 Design Concerns – Offline Mode

For the offline mode, we propose a Graph Neural Network
(GNN) model to better utilize the structural information in
request traces; this structural information reveals order and
causality of the services visited by the request, and can be
used to detail communications between these services and
their energy consumption.

We use distributed tracing to build the service graph of a
request, then we train parametrized GNN functions on the
graph. As shown in Figure 1, we model energy consumption
in four stages: (i) Graph Creation; (ii) Graph Augmentation;
(iii) Model Training; and (iv) Model Usage.

Graph Creation. We use request traces to construct a ser-
vice graph where nodes represent the services visited by the
request, and edges represent communication between nodes.

Graph Augmentation. We annotate each node (service)
with its hardware configuration, additional metrics collected
by the tracer, and (local) energy measurements of each API
exposed by that node. Furthermore, we annotate each edge
with network device specifications, bandwidth, and bytes to
be transmitted on that edge.

Model Training. We encode annotations into features to
train the GNN model via supervised learning. We train the
model under different system configuration scenarios, which
we randomly generate from three configuration sets: service,
workload, and hardware. In particular, we randomly iterate
over the sets to deploy the given services, with the given
hardware, under the given workload. Finally, we measure the
end-to-end request energy consumption on each service; as
a reference, we use the energy usage measured from mother-
boards. We validate the model in real production systems.

Model Usage. After a request execution, the GNN model
estimates the energy consumption of that request at every
node and edge (of the service graph) visited by the request.

Such a model would enable developers to identify energy

usage hotspots and improve the overall energy efficiency of
applications. In addition, estimating energy consumption un-
der different hardware configurations would help developers
to deploy energy-efficient configurations under different ser-
vice and workload scenarios.

4.3 Design Concerns – Online Mode

For the online mode, we need a model that can quickly predict
current and future energy usage for an executing request. To
this end, we propose to deploy a simple predictor model
at every node of the system. Each predictor leverages the
estimates of the offline GNN model for recent requests in
a given time window. These predictions become part of the
request’s baggage [55], which can be used to make energy-
aware decisions down the execution pipeline.

Generating Online Estimates. Each node in the service
graph of the GNN model tracks the node’s energy usage of
each API for recent requests. For each API, the node’s predic-
tor computes an average energy-usage estimate based on re-
cent requests. Periodically, the server running the GNN model
communicates to each node the estimated energy-usage infor-
mation for that specific node, which each node uses to update
its local predictor model.

Measurement Carrier. Each note visited by the request
uses its local predictor to annotate that request and its (local)
energy-usage estimate. This annotation is propagated along
with the request as part of its context-specific baggage [55],
which other components can use to make energy-aware com-
putation decisions.

5 Future Implications

In some scenarios, dedicated meters have been attached to
certain hardware to enable accurate real-time energy moni-
toring [20]. While hardware meters are not able to measure
end-to-end request energy consumption, their deployment can
help the tracer to get more accurate data.

Furthermore, to encourage application developers to treat
energy as a first-class citizen, cloud providers can shift to-
wards energy-consumption based pricing.

Finally, we can involve service customers: as more peo-
ple are committed to reduce carbon emissions, the energy
consumption of a request may be of increasing relevance to
customers. We envision services displaying to end users the
energy-consumption estimates of their requests, along the
lines of flight booking services, which annotate each flight
option with their estimated carbon emissions to encourage
customers to make a more environment-friendly choice.
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