
The Odd One Out: Energy is not like Other Metrics

Vaastav Anand, Zhiqiang Xie, Matheus Stolet, Roberta De Viti
Thomas Davidson, Reyhaneh Karimipour, Safya Alzayat, Jonathan Mace

Max Planck Institute for Software Systems

Abstract
Energy requirements for datacenters are growing at a fast
pace. Existing techniques for making datacenters efficient
focus on hardware. However, the gain in energy efficiency
that can be achieved without making the applications energy-
aware is limited. To overcome this limitation, recent work has
proposed making the software running in datacenters energy
aware. To do so, we must be able to track energy consumption
at various granularities at the software level – (i) process level;
(ii) application level; (iii) end-to-end request level.

Currently, existing software energy-tracking techniques pri-
marily focus on tracking energy at the process or application
level; only a few techniques track energy at an end-to-end
request level. However, not tracking energy at an end-to-end
request level can lead to false software optimizations and
cause a decrease in energy efficiency.

To track energy at an end-to-end request level, we can
leverage end-to-end tracking techniques for other metrics
such as distributed tracing. However, we posit that energy
cannot be treated as just another metric and that we cannot
use existing frameworks without modifications. In this paper,
we discuss how energy is different from other metrics and
describe an energy-tracking workflow that leverages these
differences and tracing techniques in order to track energy
consumption of end-to-end requests.

1 Introduction

Datacenters deployed by cloud providers are responsible for
1% of the world’s total energy consumption [42, 63]. The
energy requirements of the cloud are growing unsustainably,
with estimates showing that cloud computing may require 8%
of the world’s energy by the end of the current decade [63, 68].
To ensure that datacenters and cloud computing do not waste
energy, we must strive to make datacenters as energy efficient
as possible [2].

Researchers have come up with various techniques for
increasing energy efficiency in datacenters. These tech-
niques include, but are not limited to, using alternative en-
ergy sources for powering datacenters [29, 49], smart cooling
of datacenters [66], swarm-based dynamic workload place-
ment [3, 22, 72], user-specified energy policies for datacenter
resource allocation [10, 14], dynamically adapting the energy
consumption of a datacenter network [33], and switching dat-
acenter networks to multichannel lightwave networks [21].

However, the energy efficiency that can be achieved without
considering application design is limited, and there have been
calls to make datacenter applications more energy-aware [2].
To do so, we must be able to track the energy usage and energy
provenance of applications [2]. A key decision when tracking
energy is deciding the granularity of measurements. We can
track energy at multiple granularities – hardware, process,
application, and end-to-end request – with each granularity
enabling finer-grained control of energy usage.

Current techniques focus on energy at the granularity of a
datacenter, hardware, process, or application (§3.2). However,
we believe that tracking energy of end-to-end requests is just
as important. In fact, as microservices and serverless archi-
tectures increase in popularity, tracking energy of a single
process (or even machine node) in isolation is not useful. As
a single request can visit thousands of service components,
focusing only on separate measurements can be misleading.
For example, if a service A compresses the data to be sent to
service B, the network energy consumption for transferring
the data will be reduced. However, the processor might con-
sume more energy for compressing the data at A, leading to an
increased overall energy consumption [54]. Thus, without the
full end-to-end profile of a request, system designers might
make incorrect decisions when trying to mitigate energy inef-
ficiency. Currently, to the knowledge of the authors, there is
no way of tracking energy at an end-to-end request level.

To attribute the energy usage for a given request, it is es-
sential to track the request across different components of
the application and system stack, and to measure the energy
spent processing the request by each of these components. In
principle we can use distributed tracing frameworks which
work at the end-to-end request granularity [76]; these tracing
frameworks record traces of the computations performed for
a request by different parts of the application across multiple
machines [6, 26, 79].

However, we posit that energy cannot be treated as just
another metric and does not trivially integrate with distributed
tracing frameworks. We identify three factors that distinguish
energy from other typical metrics used today: (1) energy con-
sumption is all-encompassing, i.e., every aspect of a system
from software to hardware consumes energy; (2) the same
computation running on different hardware, platforms, or en-
vironments, can vary substantially in its energy usage; (3) the
motivation behind measuring energy consumption is different,
as it is neither performance nor correctness driven; and (4)

1



energy cannot be measured at extremely fine granularities
like, e.g., the performance counters of modern systems.

Based on these differences, we consider how to track energy
consumption at the end-to-end request level, and how existing
coarse-grained energy-measurement techniques might inte-
grate with end-to-end distributed tracing frameworks. In this
paper, we first motivate the use of end-to-end request level
energy tracking by describing potential use cases for lever-
aging measurement of energy consumption at the end-to-end
request level (§2); then, we compare and contrast the mea-
surement of energy consumption with other existing metrics
(§3), propose a model for tracking energy at the end-to-end
request level (§4), and finally provide future directions that
would help improve energy measurement (§5).

2 End-to-End Measurement Use Cases

We begin with several example use cases of how application
developers might leverage end-to-end energy tracking.

Design Exploration. Changing the design and implementa-
tion of an application can drastically impact its energy con-
sumption [46]. There has been significant work investigating
the effect of different designs on the energy efficiency of appli-
cations. These techniques analyze and optimize along various
dimensions and at various levels in the software stack. Ex-
amples include the choice of implementation language [67],
the application’s memory usage profile [36, 85], paralleliz-
ability of the application [83], usage and storing of data [53],
thread management [70], implementation choices for com-
monly used libraries [58, 71], use of compression [13], use
of software design patterns [52], and co-location of RPC ser-
vices [35].

Several use cases require the ability to measure energy for
small blocks of code internal to the application, that may
not directly map to a specific thread, core, or process [30].
Consider the compression example from §1; it is necessary to
measure the energy consumption of the compression logic to
compare the application with and without compression.

Energy Adaptive Computing. Metric measurements often
feed directly into control mechanisms at runtime, such as
request scheduling, load-balancing, and data quality decisions.
Energy is no different, and numerous prior works use real-
time energy measurements to make energy-based tradeoffs at
runtime [2, 4, 5, 9, 11, 12, 15, 27, 34, 45, 77, 87]. Similar to
recent work examining the use of machine learning models
to service requests faster at the cost of accuracy [31, 84],
energy-adaptive computing can also make decisions between
accuracy and energy consumption.

In the context of web applications, we define energy-
adaptive computing as the ability of the application to choose
different execution paths leading to potentially different out-
puts for the same input based on the energy already used by a
request. Under energy-adaptive computing, every application

component can decide what computation should be performed
for a request, in order to service that request within a given en-
ergy budget. A hypothetical example would be Google Search
providing accurate results limited to the first page of results,
and not pre-computing results for the subsequent page unless
explicitly asked, if a search request has already used a large
fraction of its energy budget. This specific use case is viable
because the click-through rate exponentially decreases as the
position of the result increases [8], leading to results on page
2 having a click-through rate lower than 7% [60, 69]. In a
similar vein, the Green framework reduced the energy con-
sumption of Bing Search by limiting the maximum number
of documents that each search query processed [5].

To be able to effectively control the energy usage of the ap-
plication at a per-request level to meet energy efficiency goals,
developers must have access to per-request energy consump-
tion information as well as an estimate of the total energy
used by the application at any given point in time during the
execution of the request.

Dead Execution Elimination. Like a router dropping pack-
ets when saturated, an application can immediately reject an
incoming request to minimize energy waste if a latency SLO
dictates that this request will be subsequently dropped. To
maximize energy efficiency, requests must be dropped as early
as possible in the execution pipeline.

Admission-control algorithms must accurately predict
the energy usage of an incoming request. To do so, they
require energy to be measured at an end-to-end request level
in tandem with aggregate energy-usage metrics at higher
granularities. In fact, basing admission-control decisions on
high-granularity energy-usage metrics alone may either result
in more requests being dropped than necessary, leading to
lower throughput, or fewer requests being dropped, leading
to energy waste.

The use cases described above have some underlying com-
monalities. All use cases need energy tracking at the end-
to-end request level, whilst also potentially having access to
hardware-level energy measurements. Some use cases record
measurements at runtime for later offline analysis and mod-
elling, correlating coarse-grained measurements with fine-
grained application traces; others use measurements imme-
diately for runtime decision-making and prediction; while
others use a combination of background modelling and run-
time decision-making. In all cases we face a similar challenge:
application-level and end-to-end request level energy usage
is not easily measured.

3 Measuring Energy

3.1 How do we measure systems?
A possible approach to measuring energy at an end-to-end
request level is to simply apply existing techniques and frame-

2



works designed for other metrics. As mentioned in §1, metrics
are useful for a range of use cases and arise at different gran-
ularities, which we describe here.

Application. Metrics at the application level focus on per-
formance data such as utilization, saturation, and failure sig-
nals. Performance metrics give insight into how an applica-
tion is running. Common examples of performance metrics
are latency, throughput, and queuing time. Latency measure-
ments (e.g., average latency, latency distribution, and jitter)
are important for user-facing applications and are a common
service-level objective (SLO) [43, 64, 73]. At application
level, throughput is measured as the number of requests or
operations completed by the application. Saturation metrics
refer to system backlogging, e.g., the length of queues. Failure
signals track the correctness behaviour of the application; an
example is the total number of API call exceptions [51].

Process. Metrics of interest at the process level include CPU
utilization, memory utilization, bytes transmitted and received,
and thread count. Data from these metrics can be analyzed to
identify any outlier process consuming too much memory or
monopolizing the CPU.

Request. End-to-end request level metrics [44, 56, 79] give
a full-system view and help gauge how a user is impacted
(e.g., latency). Most metrics at the request level provide ele-
mentary information that is aggregated at higher granularities
to help diagnose system issues. At the request level, metrics
are mostly produced rather than consumed. For instance, the
end-to-end request latency is recorded at the request level,
while other granularities, such as the application, consume
and aggregate individual request latency measurements to
report the average latency of the application.

Hardware. Metrics at the hardware granularity are parsed,
aggregated, and analyzed by coarser-grained metrics to solve
a multitude of software or hardware issues. For instance,
network-level information on link failures, packet drops, and
flow helps to ensure successful network operation [86]; spikes
in CPU temperature are used to explain reduction of clock
speeds [23]; and, cache occupancy is used to detect side-
channel attacks [7].

3.2 How do we measure energy?

Energy Consumption Models. According to a recent sur-
vey of energy-consumption modelling techniques [18], prior
work proposes several methods to model the energy at a dat-
acenter level to make datacenters more energy-efficient [1,
16, 41, 57, 61, 74, 75, 82]. For instance, there are estimation
models to approximate the energy usage of servers [48, 62]
or of the entire datacenter network, to improve the energy
efficiency of the network [33, 50, 80]. Furthermore, there are
techniques modelling energy consumption as a function of the
resource usage of each application process [19], and others

requiring additional external hardware for measurements [24].

Energy Measurements. Measuring energy begins at the
hardware level before being aggregated or sliced at differ-
ent granularities. Modern Intel processors provide energy
measurements for servers through CPU registers that are up-
dated approximately every 1ms [39]. These counters provide
numbers for CPU and memory controller power consumption
based on the Running Average Power Limit (RAPL) [17].
RAPL measurements can then be further broken down at the
process and function levels.

Fine-Grained Measurements. Some libraries build upon
Intel’s RAPL measurements [39] to provide fine-grained
process-level measurements. For example, Scaphandre [37]
provides process-level metrics over large time periods sam-
pled at 1s intervals [38]. However, RAPL registers need to
be continuously polled for a higher temporal resolution; this
polling itself requires consumption of energy which distorts
the reported energy information due to the observer effect [81].
HAECER [30] uses RAPL to compute energy consumption
for short data paths, e.g., functions. HAECER requires inser-
tion of delay loops to synchronize the update rate of RAPL’s
counters. While promising, these approaches do not yet meet
the low latency demands of microservice applications that of-
ten have SLOs on the order of milliseconds or microseconds.
Other monitoring tools model energy consumption for func-
tions in a single machine based on raw information available
from hardware devices [65].

Power Containers [78] measure request-level power con-
sumption of, e.g., a webserver. Power Containers operate at an
OS level by using cheaper, high-frequency CPU, IO, and mem-
ory counters as a proxy for calculating finer-grained energy
consumption. The approach proposed by Power Containers
is promising, but has limiting assumptions about execution
structure (e.g., no application-level data dependencies across
threads) that do not broadly apply in modern RPC servers.

End-to-End Measurements. Prior work on distributed en-
ergy measurement has primarily focused on embedded sys-
tems [25, 47]. For example, Quanto [25] requires an energy
meter [20] to be attached to every piece of hardware and pro-
vides task tracking across different parts of hardware. How-
ever, Quanto is designed for embedded systems that use a
different, simplified programming model and run on nodes
with TinyOS [47]. By contrast, the hardware, concurrency,
and execution structure of datacenter applications are signifi-
cantly more complex.

3.3 How is energy different?

Energy consumption is all-encompassing. Energy con-
sumption is distributed across different system devices. Ev-
ery single system device contributes to the overall energy
usage. For instance, given the rising trends towards pro-
grammable devices (e.g., GPUs, TPUs, programmable ASICs,

3



programmable switches) to discuss energy consumption we
need to consider the energy consumption of all of these de-
vices. Currently, there is no unifying abstraction that supports
measuring energy from all devices in a usable way at a request
level. By contrast, other system metrics can simply be mea-
sured end-to-end and do not require individual measurements
from each device in the system.

Energy consumption is dynamic. Many traditional met-
rics, such as resource consumption (e.g., disk, CPU, network),
depend only on the application logic or state – the same ap-
plication running on different hardware or platforms will not
vary significantly. By contrast, energy consumption can vary
significantly depending on factors at all levels, from hard-
ware to application: e.g., the specific hardware; co-location
with other applications [35]; physical proximity of distributed
components [35]; concurrent requests and tasks within the
application [70]; idleness of cores [28]; application-level op-
timizations like batching and compression [54].

The motivation behind measuring energy is different.
The motivation for measuring energy consumption differs
from the motivation for metrics in §3.1. In fact, most system
metrics are used to diagnose performance issues, maintain
quality of service, or debug correctness issues. For instance,
systems monitor the tail-latency of requests in order to main-
tain a certain quality of service; throughput numbers are col-
lected to diagnose performance issues in an application; error
or crashes are recorded to identify bugs. Unlike these metrics,
energy measurement is neither performance nor correctness
driven. Although energy measurement can be used for aggre-
gate analysis, energy measurement has found a very important
use in energy-adaptive applications that change behaviour
based on energy consumption data.

Hardware does not support fine-grained software-level
measurements. Unlike other metrics, commodity hardware
does not yet support energy tracking and measurement at fine-
grained software level granularities. For instance, Intel pro-
vides energy measurements in servers via its RAPL interface.
However, using RAPL presents three main disadvantages: (i)
the RAPL registers need to be continuously polled, which
consumes more energy; (ii) RAPL measurements can only
provide granularity up to 1ms [39, Vol.3,Ch.14]; (iii) RAPL
might be subject to side-channel attacks [40]. An alternative
to RAPL is to adopt specialized hardware that allows finer-
grained energy tracking. However, as accurate energy tracking
must cross process and machine level boundaries, we need
solutions at finer-grained software level granularities.

4 Modeling Energy Consumption of Individ-
ual Requests

Since it is not feasible to directly measure the energy con-
sumption of individual requests, we believe that any energy

S0

S2S1

Application 
Set

Configuration 
Set

Tracer

𝑒𝑒 = 𝑓𝑓(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

Meter

Reference

Construct

Tracer

RPCs

Figure 1: GNN model training workflow for energy estimation

tracking solution would need to adopt a hybrid-measurement
and model-based approach to estimate energy consumption.
To support the use cases in §2, we have to support energy
modelling in both an offline mode and an online mode. The
offline mode should provide energy measurements of a re-
quest for offline analysis. The online mode should track the
real-time energy usage of a request and predict the future
energy usage of that request at any point during the request
execution, while inducing minimal overhead.

4.1 Leveraging Distributed Tracing
As highlighted in §3.2, we cannot directly measure energy at
a fine-grained request level, but we can make estimates. Cur-
rent approaches, such as Power Containers [78], model the
energy usage of a request for a single server based on CPU,
IO, and memory counters. These counters are then combined
with coarser energy measurements to attribute consumption
to the tasks executing within a time interval. In the distributed
setting, Facebook has leveraged distributed tracing to obtain
CPU utilization information from each node in the system for
understanding the relationship between power consumption
and CPU utilization [28]. Each approach on its own does not
provide all the data needed to model energy consumption at
an end-to-end request level. However, by combining these
two approaches, we can obtain the relevant information for
modelling energy consumption. In particular, we leverage dis-
tributed tracing for data collection in three ways – (i) Metric
Collection, (ii) API Profiling, and (iii) Data Correlation.

Metric Collection. First, we use distributed tracing to col-
lect fine-grained system information (e.g., the topology of
services and machines visited by a request, hardware con-
figurations, execution time, bytes to write to storage or send
via network, and utilization of CPU, GPU, and other accel-
erators). Then, we leverage such information to compose
machine learning (ML) features that are highly correlated
with energy consumption. To do so, we employ feature en-
gineering, namely the process of selecting and transforming
data into features for supervised ML. Feature engineering
has proven to be crucial in applying ML to optimize system
behavior [32, 59].

API Profiling. For each request, we extract the list of APIs
executed by the request; for each API, we measure the energy
consumption locally, on each machine visited by the request,

4



using Intel’s RAPL registers. From these measurements, we
derive a baseline for the energy consumption of each API.
Note that we are not using the Intel RAPL register during pro-
duction, but prior to production, to get fine-grained isolated
energy measurements.

Data Correlation. To generate meaningful predictions in
production, any model would need energy-usage measure-
ments of different parts of an end-to-end request. We leverage
existing infrastructure for context propagation in distributed
tracing [55] to propagate general tracing metrics as well as
energy measurements between processes, in order to build
a complete profile for each request. Each profile consists of
information on all the services visited by the request, plus the
order and dependencies among these services, which can be
used to build an invocation timeline or a service graph.

4.2 Design Concerns – Offline Mode

For the offline mode, we propose a Graph Neural Network
(GNN) model to better utilize the structural information in
request traces; this structural information reveals order and
causality of the services visited by the request, and can be
used to detail communications between these services and
their energy consumption.

We use distributed tracing to build the service graph of a
request, then we train parametrized GNN functions on the
graph. As shown in Figure 1, we model energy consumption
in four stages: (i) Graph Creation; (ii) Graph Augmentation;
(iii) Model Training; and (iv) Model Usage.

Graph Creation. We use request traces to construct a ser-
vice graph where nodes represent the services visited by the
request, and edges represent communication between nodes.

Graph Augmentation. We annotate each node (service)
with its hardware configuration, additional metrics collected
by the tracer, and (local) energy measurements of each API
exposed by that node. Furthermore, we annotate each edge
with network device specifications, bandwidth, and bytes to
be transmitted on that edge.

Model Training. We encode annotations into features to
train the GNN model via supervised learning. We train the
model under different system configuration scenarios, which
we randomly generate from three configuration sets: service,
workload, and hardware. In particular, we randomly iterate
over the sets to deploy the given services, with the given
hardware, under the given workload. Finally, we measure the
end-to-end request energy consumption on each service; as
a reference, we use the energy usage measured from mother-
boards. We validate the model in real production systems.

Model Usage. After a request execution, the GNN model
estimates the energy consumption of that request at every
node and edge (of the service graph) visited by the request.

Such a model would enable developers to identify energy

usage hotspots and improve the overall energy efficiency of
applications. In addition, estimating energy consumption un-
der different hardware configurations would help developers
to deploy energy-efficient configurations under different ser-
vice and workload scenarios.

4.3 Design Concerns – Online Mode

For the online mode, we need a model that can quickly predict
current and future energy usage for an executing request. To
this end, we propose to deploy a simple predictor model
at every node of the system. Each predictor leverages the
estimates of the offline GNN model for recent requests in
a given time window. These predictions become part of the
request’s baggage [55], which can be used to make energy-
aware decisions down the execution pipeline.

Generating Online Estimates. Each node in the service
graph of the GNN model tracks the node’s energy usage of
each API for recent requests. For each API, the node’s predic-
tor computes an average energy-usage estimate based on re-
cent requests. Periodically, the server running the GNN model
communicates to each node the estimated energy-usage infor-
mation for that specific node, which each node uses to update
its local predictor model.

Measurement Carrier. Each note visited by the request
uses its local predictor to annotate that request and its (local)
energy-usage estimate. This annotation is propagated along
with the request as part of its context-specific baggage [55],
which other components can use to make energy-aware com-
putation decisions.

5 Future Implications

In some scenarios, dedicated meters have been attached to
certain hardware to enable accurate real-time energy moni-
toring [20]. While hardware meters are not able to measure
end-to-end request energy consumption, their deployment can
help the tracer to get more accurate data.

Furthermore, to encourage application developers to treat
energy as a first-class citizen, cloud providers can shift to-
wards energy-consumption based pricing.

Finally, we can involve service customers: as more peo-
ple are committed to reduce carbon emissions, the energy
consumption of a request may be of increasing relevance to
customers. We envision services displaying to end users the
energy-consumption estimates of their requests, along the
lines of flight booking services, which annotate each flight
option with their estimated carbon emissions to encourage
customers to make a more environment-friendly choice.

5



References

[1] B. Aebischer and L. M. Hilty. The energy demand of
ICT: a historical perspective and current methodological
challenges. In ICT Innovations for Sustainability, pages
71–103. Springer, 2015.

[2] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and
I. Zhang. Treehouse: A case for carbon-aware datacenter
software. arXiv preprint arXiv:2201.02120, 2022.

[3] I. Anghel, C. B. Pop, T. Cioara, I. Salomie, and I. Var-
tic. A swarm-inspired technique for self-organizing and
consolidating data centre servers. Scalable Computing:
Practice and Experience, 14(2):69–82, 2013.

[4] T. Babakol, A. Canino, K. Mahmoud, R. Saxena, and
Y. D. Liu. Calm energy accounting for multithreaded
java applications. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, pages 976–988, 2020.

[5] W. Baek and T. M. Chilimbi. Green: A framework
for supporting energy-conscious programming using
controlled approximation. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 198–209, 2010.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling.
In OSDI, volume 4, pages 18–18, 2004.

[7] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and
J.-M. Menaud. Cache-based side-channel attacks de-
tection through intel cache monitoring technology and
hardware performance counters. In 2018 Third Interna-
tional Conference on Fog and Mobile Edge Computing
(FMEC), pages 7–12. IEEE, 2018.

[8] J. Beus. Why (almost) everything you knew about
google CTR is no longer valid. https://www.
sistrix.com/blog/why-almost-everything-you-
knew-about-google-ctr-is-no-longer-valid/,
2020.

[9] B. Boston, A. Sampson, D. Grossman, and L. Ceze.
Probability type inference for flexible approximate pro-
gramming. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 470–
487, 2015.

[10] R. Buyya, A. Beloglazov, and J. Abawajy. Energy-
efficient management of data center resources for cloud
computing: A vision, architectural elements, and open
challenges. arXiv preprint arXiv:1006.0308, 2010.

[11] A. Canino and Y. D. Liu. Proactive and adaptive energy-
aware programming with mixed typechecking. ACM
SIGPLAN Notices, 52(6):217–232, 2017.

[12] A. Canino, Y. D. Liu, and H. Masuhara. Stochastic
energy optimization for mobile gps applications. In
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pages
703–713, 2018.

[13] Y. Chen, A. Ganapathi, and R. H. Katz. To compress or
not to compress-compute vs. io tradeoffs for mapreduce
energy efficiency. In Proceedings of the first ACM SIG-
COMM workshop on Green networking, pages 23–28,
2010.

[14] D. Cheng, P. Lama, C. Jiang, and X. Zhou. Towards
energy efficiency in heterogeneous Hadoop clusters by
adaptive task assignment. In 2015 IEEE 35th Interna-
tional Conference on Distributed Computing Systems,
pages 359–368. IEEE, 2015.

[15] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. En-
ergy types. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, pages 831–850, 2012.

[16] G. D. Costa, A. Kopecki, A. Oleksiak, J.-M. Pierson,
T. Piontek, E. Volk, S. Wesner, et al. Modeling and
simulation of data center energy-efficiency in CoolE-
mAll. In International Workshop on Energy Efficient
Data Centers, pages 25–36. Springer, 2012.

[17] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. RAPL: Memory power estimation and capping.
In 2010 ACM/IEEE International Symposium on Low-
Power Electronics and Design (ISLPED), pages 189–
194. IEEE, 2010.

[18] M. Dayarathna, Y. Wen, and R. Fan. Data center energy
consumption modeling: A survey. IEEE Communica-
tions Surveys & Tutorials, 18(1):732–794, 2015.

[19] T. Do, S. Rawshdeh, and W. Shi. ptop: A process-level
power profiling tool, 2009.

[20] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. En-
ergy metering for free: Augmenting switching regulators
for real-time monitoring. In 2008 International Con-
ference on Information Processing in Sensor Networks
(ipsn 2008), pages 283–294. IEEE, 2008.

[21] Y. S. Fainman, J. Ford, W. M. Mellette, S. Mookherjea,
G. Porter, A. C. Snoeren, G. Papen, S. Saeedi, J. Cun-
ningham, A. Krishnamoorthy, et al. Leed: A lightwave
energy-efficient datacenter. In Optical Fiber Commu-
nication Conference, pages M4D–4. Optical Society of
America, 2019.

6

https://www.sistrix.com/blog/why-almost-everything-you-knew-about-google-ctr-is-no-longer-valid/
https://www.sistrix.com/blog/why-almost-everything-you-knew-about-google-ctr-is-no-longer-valid/
https://www.sistrix.com/blog/why-almost-everything-you-knew-about-google-ctr-is-no-longer-valid/


[22] E. Feller, L. Rilling, and C. Morin. Energy-aware ant
colony based workload placement in clouds. In 2011
IEEE/ACM 12th International Conference on Grid Com-
puting, pages 26–33. IEEE, 2011.

[23] A. P. Ferreira, D. Mosse, and J. C. Oh. Thermal faults
modeling using a RC model with an application to web
farms. In 19th Euromicro Conference on Real-Time
Systems (ECRTS’07), pages 113–124, 2007.

[24] J. Flinn and M. Satyanarayanan. Powerscope: A tool
for profiling the energy usage of mobile applications.
In Proceedings WMCSA’99. Second IEEE Workshop
on Mobile Computing Systems and Applications, pages
2–10. IEEE, 1999.

[25] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:
Tracking energy in networked embedded systems. In
OSDI, volume 8, pages 323–338, 2008.

[26] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker. X-
trace: A pervasive network tracing framework. In 4th
USENIX Symposium on Networked Systems Design &
Implementation (NSDI 07), Cambridge, MA, Apr. 2007.
USENIX Association.

[27] B. Gaudette, C.-J. Wu, and S. Vrudhula. Improving
smartphone user experience by balancing performance
and energy with probabilistic QoS guarantee. In 2016
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 52–63. IEEE,
2016.

[28] A. Gilgur, B. Coutinho, I. Narayanan, and P. Malani.
Transitive power modeling for improving resource effi-
ciency in a hyperscale datacenter. In Companion Pro-
ceedings of the Web Conference 2021, pages 182–191,
2021.

[29] Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bian-
chini. Parasol and GreenSwitch: Managing datacenters
powered by renewable energy. ACM SIGPLAN Notices,
48(4):51–64, 2013.

[30] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Mea-
suring energy consumption for short code paths using
RAPL. ACM SIGMETRICS Performance Evaluation
Review, 40(3):13–17, 2012.

[31] M. Halpern, B. Boroujerdian, T. Mummert, E. Duester-
wald, and V. J. Reddi. One size does not fit all: Quan-
tifying and exposing the accuracy-latency trade-off in
machine learning cloud service apis via tolerance tiers.
arXiv preprint arXiv:1906.11307, 2019.

[32] M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann,
and H. S. Gunawi. LinnOS: Predictability on unpre-
dictable flash storage with a light neural network. In

14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 173–190, 2020.

[33] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. Elastictree:
Saving energy in data center networks. In Nsdi, vol-
ume 10, pages 249–264, 2010.

[34] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for respon-
sive power-aware computing. ACM SIGARCH computer
architecture news, 39(1):199–212, 2011.

[35] C.-H. Hsu, Q. Deng, J. Mars, and L. Tang. Smoothop-
erator: Reducing power fragmentation and improving
power utilization in large-scale datacenters. In Proceed-
ings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 535–548, 2018.

[36] C.-H. Hsu and U. Kremer. The design, implementation,
and evaluation of a compiler algorithm for cpu energy
reduction. In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and im-
plementation, pages 38–48, 2003.

[37] hubblo-org. Scaphandre. https://github.com/
hubblo-org/scaphandre, 2021.

[38] hubblo-org. How scaphandre computes per process
power consumption. https://hubblo-org.github.
io/scaphandre-documentation/explanations/
how-scaph-computes-per-process-power-
consumption.html, 2022.

[39] Intel. Combined volume set of Intel 64 and IA-32
architectures software developer’s manual. https://
www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html, 2022.

[40] Intel. Running average power limit energy re-
porting / CVE-2020-8694 , CVE-2020-8695 /
INTEL-SA-00389. https://www.intel.com/
content/www/us/en/developer/articles/
technical/software-security-guidance/
advisory-guidance/running-average-power-
limit-energy-reporting.html, 2022.

[41] M. A. Islam, S. Ren, and G. Quan. Online energy bud-
geting for virtualized data centers. In 2013 IEEE 21st
International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Sys-
tems, pages 424–433. IEEE, 2013.

[42] N. Jones. How to stop data centres from gobbling up the
world’s electricity. Nature, 561(7722):163–167, 2018.

7

https://github.com/hubblo-org/scaphandre
https://github.com/hubblo-org/scaphandre
https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html


[43] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-
ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-
ing for Microsecond-scale tail latency. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 345–360, Boston, MA, Feb.
2019. USENIX Association.

[44] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa,
J. O’Neill, K. W. Ong, B. Schaller, P. Shan, B. Viscomi,
V. Venkataraman, K. Veeraraghavan, and Y. J. Song.
Canopy: An end-to-end performance tracing and analy-
sis system. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 34–50,
New York, NY, USA, 2017. Association for Computing
Machinery.

[45] A. Kansal, S. Saponas, A. B. Brush, K. S. McKinley,
T. Mytkowicz, and R. Ziola. The latency, accuracy, and
battery (lab) abstraction: programmer productivity and
energy efficiency for continuous mobile context sensing.
ACM SIGPLAN Notices, 48(10):661–676, 2013.

[46] A. Kansal and F. Zhao. Fine-grained energy profiling for
power-aware application design. ACM SIGMETRICS
Performance Evaluation Review, 36(2):26–31, 2008.

[47] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. White-
house, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
et al. TinyOS: An operating system for sensor networks.
In Ambient intelligence, pages 115–148. Springer, 2005.

[48] A. W. Lewis, S. Ghosh, and N.-F. Tzeng. Run-time
energy consumption estimation based on workload in
server systems. HotPower, 8:17–21, 2008.

[49] C. Li, R. Wang, T. Li, D. Qian, and J. Yuan. Managing
green datacenters powered by hybrid renewable energy
systems. In 11th International Conference on Auto-
nomic Computing (ICAC 14), pages 261–272, 2014.

[50] D. Li, Y. Shang, and C. Chen. Software defined green
data center network with exclusive routing. In IEEE
INFOCOM 2014-IEEE Conference on Computer Com-
munications, pages 1743–1751. IEEE, 2014.

[51] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh,
X. Yang, Q. Lin, Y. Wu, S. Levy, and M. Chintalapati.
Gandalf: An intelligent, End-To-End analytics service
for safe deployment in Large-Scale cloud infrastructure.
In 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20), pages 389–402,
Santa Clara, CA, Feb. 2020. USENIX Association.

[52] A. Litke, K. Zotos, A. Chatzigeorgiou, and
G. Stephanides. Energy consumption analysis of
design patterns. In Proceedings of the International
Conference on Machine Learning and Software
Engineering, pages 86–90, 2005.

[53] K. Liu, G. Pinto, and Y. D. Liu. Data-oriented character-
ization of application-level energy optimization. In In-
ternational Conference on Fundamental Approaches to
Software Engineering, pages 316–331. Springer, 2015.

[54] Y.-H. Lu, Q. Qiu, A. R. Butt, and K. W. Cameron. End-
to-end energy management. Computer, 44(11):75–77,
2011.

[55] J. Mace and R. Fonseca. Universal context propagation
for distributed system instrumentation. In Proceedings
of the thirteenth EuroSys conference, pages 1–18, 2018.

[56] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dy-
namic causal monitoring for distributed systems. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, SOSP ’15, page 378–393, New York,
NY, USA, 2015. Association for Computing Machinery.

[57] A. H. Mahmud and S. Ren. Online capacity provisioning
for carbon-neutral data center with demand-responsive
electricity prices. ACM SIGMETRICS Performance
Evaluation Review, 41(2):26–37, 2013.

[58] I. Manotas, L. Pollock, and J. Clause. Seeds: A soft-
ware engineer’s energy-optimization decision support
framework. In Proceedings of the 36th International
Conference on Software Engineering, pages 503–514,
2014.

[59] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan,
Z. Meng, and M. Alizadeh. Learning scheduling al-
gorithms for data processing clusters. In Proceedings of
the ACM special interest group on data communication,
pages 270–288. 2019.

[60] L. Marketing. How far down the search
engine results page will most people go?
https://www.theleverageway.com/blog/how-
far-down-the-search-engine-results-page-
will-most-people-go/, 2017.

[61] E. R. Masanet, R. E. Brown, A. Shehabi, J. G. Koomey,
and B. Nordman. Estimating the energy use and effi-
ciency potential of US data centers. Proceedings of the
IEEE, 99(8):1440–1453, 2011.

[62] Microsoft. Joulemeter. http://research.
microsoft.com/en-us/projects/joulemeter/,
2010.

[63] G. o. G. S. Microsoft Teams Up With Accen-
ture. https://www.bloomberg.com/news/
articles/2021-05-25/microsoft-teams-up-
with-accenture-goldman-on-greener-software.
Bass, Dina, 2021.

8

https://www.theleverageway.com/blog/how-far-down-the-search-engine-results-page-will-most-people-go/
https://www.theleverageway.com/blog/how-far-down-the-search-engine-results-page-will-most-people-go/
https://www.theleverageway.com/blog/how-far-down-the-search-engine-results-page-will-most-people-go/
http://research.microsoft.com/en-us/projects/joulemeter/
http://research.microsoft.com/en-us/projects/joulemeter/
https://www.bloomberg.com/news/articles/2021-05-25/microsoft-teams-up-with-accenture-goldman-on-greener-software
https://www.bloomberg.com/news/articles/2021-05-25/microsoft-teams-up-with-accenture-goldman-on-greener-software
https://www.bloomberg.com/news/articles/2021-05-25/microsoft-teams-up-with-accenture-goldman-on-greener-software


[64] J. C. Mogul and R. R. Kompella. Inferring the network
latency requirements of cloud tenants. In 15th Work-
shop on Hot Topics in Operating Systems (HotOS XV),
Kartause Ittingen, Switzerland, May 2015. USENIX As-
sociation.

[65] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Sein-
turier. Runtime monitoring of software energy hotspots.
In 2012 Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
pages 160–169. IEEE, 2012.

[66] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and
R. Friedrich. Smart cooling of data centers. In Interna-
tional Electronic Packaging Technical Conference and
Exhibition, volume 36908, pages 129–137, 2003.

[67] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P.
Fernandes, and J. Saraiva. Energy efficiency across pro-
gramming languages: how do energy, time, and mem-
ory relate? In Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language Engi-
neering, pages 256–267, 2017.

[68] M. Pesce. Cloud computing’s coming energy cri-
sis: The cloud’s electricity needs are growing un-
sustainably. https://spectrum.ieee.org/cloud-
computings-coming-energy-crisis, 2021.

[69] P. Petrescu. Google organic click-through rates in
2014. https://moz.com/blog/google-organic-
click-through-rates-in-2014, 2014.

[70] G. Pinto, F. Castor, and Y. D. Liu. Understanding en-
ergy behaviors of thread management constructs. In
Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages
& Applications, pages 345–360, 2014.

[71] G. Pinto, K. Liu, F. Castor, and Y. D. Liu. A comprehen-
sive study on the energy efficiency of java’s thread-safe
collections. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
20–31. IEEE, 2016.

[72] C. B. Pop, I. Anghel, T. Cioara, I. Salomie, and I. Vartic.
A swarm-inspired data center consolidation methodol-
ogy. In Proceedings of the 2nd International Conference
on Web Intelligence, Mining and Semantics, pages 1–7,
2012.

[73] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer. FIRM: An intelligent fine-grained resource
management framework for SLO-Oriented microser-
vices. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 805–
825. USENIX Association, Nov. 2020.

[74] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu. No "power" struggles: coordinated multi-
level power management for the data center. In Proceed-
ings of the 13th international conference on Architec-
tural support for programming languages and operating
systems, pages 48–59, 2008.

[75] S. M. Rivoire. Models and metrics for energy-efficient
computer systems. Stanford University, 2008.

[76] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman,
R. Fonseca, and G. R. Ganger. Principled workflow-
centric tracing of distributed systems. In Proceedings
of the Seventh ACM Symposium on Cloud Computing,
pages 401–414, 2016.

[77] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. Enerj: Approximate data
types for safe and general low-power computation. ACM
SIGPLAN Notices, 46(6):164–174, 2011.

[78] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and
Z. Chen. Power containers: An os facility for fine-
grained power and energy management on multicore
servers. ACM SIGARCH Computer Architecture News,
41(1):65–76, 2013.

[79] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephen-
son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.
Dapper, a large-scale distributed systems tracing infras-
tructure. 2010.

[80] I. Widjaja, A. Walid, Y. Luo, Y. Xu, and H. J. Chao.
Small versus large: Switch sizing in topology design of
energy-efficient data centers. In 2013 IEEE/ACM 21st
International Symposium on Quality of Service (IWQoS),
pages 1–6. IEEE, 2013.

[81] Wikipedia. Observer effect(physics). https:
//en.wikipedia.org/wiki/Observer_effect_
(physics), 2022.

[82] Y. Yao, L. Huang, A. B. Sharma, L. Golubchik, and M. J.
Neely. Power cost reduction in distributed data centers:
A two-time-scale approach for delay tolerant workloads.
IEEE Transactions on Parallel and Distributed Systems,
25(1):200–211, 2012.

[83] I. Zecena, Z. Zong, R. Ge, T. Jin, Z. Chen, and M. Qiu.
Energy consumption analysis of parallel sorting algo-
rithms running on multicore systems. In 2012 Interna-
tional Green Computing Conference (IGCC), pages 1–6.
IEEE, 2012.

[84] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg.
Model-Switching: Dealing with fluctuating workloads
in Machine-Learning-as-a-Service systems. In 12th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

9

https://spectrum.ieee.org/cloud-computings-coming-energy-crisis
https://spectrum.ieee.org/cloud-computings-coming-energy-crisis
https://moz.com/blog/google-organic-click-through-rates-in-2014
https://moz.com/blog/google-organic-click-through-rates-in-2014
https://en.wikipedia.org/wiki/Observer_effect_(physics)
https://en.wikipedia.org/wiki/Observer_effect_(physics)
https://en.wikipedia.org/wiki/Observer_effect_(physics)


[85] Y. Zhang, X. Hu, and D. Z. Chen. Efficient global regis-
ter allocation for minimizing energy consumption. ACM
SIGPLAN Notices, 37(4):42–53, 2002.

[86] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu,
N. Zheng, R. Wang, H. Wu, Y. Wang, and N. Zhang.
LightGuardian: A Full-Visibility, lightweight, in-band
telemetry system using sketchlets. In 18th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 21), pages 991–1010. USENIX Association,
Apr. 2021.

[87] H. S. Zhu, C. Lin, and Y. D. Liu. A programming model
for sustainable software. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol-
ume 1, pages 767–777. IEEE, 2015.

10


	Introduction
	End-to-End Measurement Use Cases
	Measuring Energy
	How do we measure systems?
	How do we measure energy?
	How is energy different?

	Modeling Energy Consumption of Individual Requests
	Leveraging Distributed Tracing
	Design Concerns – Offline Mode
	Design Concerns – Online Mode

	Future Implications

