
MAESTRO: Multi-Agent Evaluation Suite for
Testing, Reliability, and Observability

Tie Ma∗†
Beihang University

Yixi Chen∗
KAUST

Vaastav Anand
MPI-SWS

Alessandro Cornacchia
KAUST

Amândio R. Faustino
KAUST

Guanheng Liu
Beihang University

Shan Zhang
Beihang University

Hongbin Luo
Beihang University

Suhaib A. Fahmy
KAUST

Zafar A. Qazi
LUMS & KAUST

Marco Canini
KAUST

Abstract
Large language model (LLM)-based multi-agent systems (MAS) are
rapidly moving from demos to production, yet their dynamic execu-
tion makes them stochastic, failure-prone, and difficult to reproduce
or debug. Existing benchmarks largely emphasize application-level
outcomes (e.g., task success) and provide limited, non-standardized
visibility into execution behavior, making controlled, apples-to-
apples comparisons across heterogeneous MAS architectures chal-
lenging.

We present MAESTRO, an evaluation suite for the testing, re-
liability, and observability of LLM-based MAS. MAESTRO stan-
dardizes MAS configuration and execution through a unified in-
terface, supports integrating both native and third-party MAS via
a repository of examples and lightweight adapters, and exports
framework-agnostic execution traces together with system-level
signals (e.g., latency, cost, and failures). We instantiate MAESTRO
with 12 representative MAS spanning popular agentic frameworks
and interaction patterns, and conduct controlled experiments across
repeated runs, backend models, and tool configurations. Our case
studies show that MAS executions can be structurally stable yet
temporally variable, leading to substantial run-to-run variance in
performance and reliability. We further find that MAS architec-
ture is the dominant driver of resource profiles, reproducibility,
and cost–latency–accuracy trade-off, often outweighing changes
in backend models or tool settings. Overall, MAESTRO enables sys-
tematic evaluation and provides empirical guidance for designing
and optimizing agentic systems.

1 Introduction
LLM-based multi-agent systems (MAS) enable flexible task solvers
that can handle diverse and multimodal workloads [20] with mini-
mal modification to the underlying system architecture. However,
this flexibility also introduces substantial uncertainty in system
load and execution behavior. Unlike traditional deterministic work-
flows, LLM-based MAS operate under a dynamic execution model
in which decisions are made on the fly during runtime, driven by
LLM outputs rather than by statically defined control flow.

Importantly, MAS should not be viewed merely as a collection of
lightweight client-side frameworks. Instead, they constitute com-
plex systems characterized by dynamic interactions [53], emergent
behaviors [20], and a broad spectrum of failure modes [5]. These
∗Equal contribution.
†Work done while Tie Ma was interning at KAUST.

characteristics challenge conventional assumptions such as pre-
dictability, observability, and performance isolation, making tradi-
tional system optimization techniques less effective in this context.
Therefore, a benchmark suite that systematically characterizes MAS
execution behavior is essential for both system operators seeking
performance optimization and researchers aiming to identify open
challenges and opportunities for innovation.

Unfortunately, existing standardized benchmarks for LLM-based
MAS remain limited and often lack broad coverage of MAS exe-
cution behavior. Prior work has largely focused on LLM serving
and inference efficiency [3, 7, 23, 31, 32, 50], evaluating server-side
model performance rather than the execution behavior of agent
systems. With the emergence of LLM-based MAS, recent bench-
marks [2, 4, 15, 22, 26, 35, 47, 49, 53, 56] have begun to assess individ-
ual agent capabilities (e.g., tool use and communication strategies);
however, they largely remain centered on application-level perfor-
mance (e.g., task success and response quality) and fall short of
offering a standardized, comprehensive observability perspective
on the system-level impact of MAS execution and corresponding
workload management challenges. This fragmentation makes it
difficult to reason about complex runtime behavior and to compare
systems consistently across settings. Consistent with this gap, a
recent survey [41] reports that nearly 75% of teams operating pro-
duction MAS evaluate their systems without benchmarks, while
25% build custom benchmarks, limiting portability and reuse across
scenarios.

Based on these observations, we define the following core objec-
tives necessary for a good benchmark for LLM-based MAS:
O1: Architectural heterogeneity. The execution stack of LLM-
based MAS is highly malleable. A single objective can be realized
through diverse configurations, including the number of agents, role
assignments, interaction topologies (e.g., centralized, hierarchical,
or peer-to-peer), and communication protocols. Furthermore, the
design space encompasses choices regarding orchestration frame-
works, backend LLMs, budget constraints, tool availability, and
memory mechanisms, as well as policies for reflection and termina-
tion.
O2: Functional representativeness. The rapid proliferation of
agentic workflows and real-world deployments has led to a growing
diversity of MAS architectures, many of which are optimized for

1

ar
X

iv
:2

60
1.

00
48

1v
1

 [
cs

.N
I]

 1
 J

an
 2

02
6

https://arxiv.org/abs/2601.00481v1

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

Table 1: Summary of Systematic Findings across Case Studies (§4)

Subject Ref. Finding

Resources §4.2 Execution requires minimal resources: sub-GB memory, <20% of a CPU core, and MB-scale traffic.

General §4.3 Interaction structures remain stable while call sequences exhibit temporal instability.

§4.7 Tool integration mitigates speculative generation, reducing latency and cost.

Backend §4.5 Model scaling yields inconsistent gains; execution dynamics dominate performance.

§4.6 Model-specific failures are significantly amplified by execution dynamics.

Architecture

§4.2 MAS architecture significantly dominates resource consumption profiles.

§4.3 Architecture governs call graph similarity and determines system reproducibility.

§4.4 Generalized architectures incur higher resource overhead without accuracy gains.

§4.7 Accuracy gains are architecture-dependent and contingent on low execution overhead.

specific task patterns or application domains. Recent designs ex-
plore increasingly sophisticated coordination and reasoning strate-
gies [45, 52, 57, 58]. As a result, no single architecture can be con-
sidered representative of the broader MAS design space.
O3: Execution traceability. Current commercial agentic systems
often expose high-level reasoning traces but offer limited, non-
standardized visibility into execution-level details and internal
system states. Furthermore, existing MAS modules lack a unified
telemetry standard, often resulting in “silent” information consump-
tion where different LLM providers and frameworks fail to expose
critical operational data to the user [44].

To address this gap, we present MAESTRO, a comprehensive,
open-source evaluation suite for LLM-based MAS. MAESTRO is
designed to enable systematic characterization of execution behav-
ior across diverse agent architectures, interaction patterns, and
runtime conditions, with the goal of informing principled system
optimization.

Our contributions are threefold:
Rich and extensible benchmarks.MAESTRO incorporates 12
representative MAS examples, each characterized by distinct archi-
tectural differences, to serve as a foundation for deriving systematic
insights, as shown in Table 1. Moreover, MAESTRO is designed
for extensibility, allowing the community to integrate and reuse
existing MAS implementations within our evaluation framework
with minimal effort.
Framework-agnostic system integration. MAESTRO is built
upon a collection of widely used, open-source agentic frameworks
and examples [10, 17, 25], aiming to capture common architectural
patterns observed in practice rather than favoring a single workflow
design.
Unified execution-level telemetry standards. MAESTRO de-
fines and implements a unified telemetry interface designed to cap-
ture comprehensive execution data across diverse modules. This
architecture establishes a common protocol that various MAS com-
ponents can conform to, ensuring consistent and transparent moni-
toring throughout the system lifecycle.

MAESTRO is available at https://github.com/sands-lab/maestro.

2 Background
2.1 Anatomy of an LLM-based MAS
LLM-based Multi-Agent Systems (MAS) are collections of LLM
agents that operate in tandem to complete large tasks that are
beyond the capabilities of individual agents [21]. In a typical MAS,
multiple specialized agents collaborate together to plan, coordinate,
and execute large tasks with each individual agent focusing on a
specific sub-task.
Building blocks. An LLM agent is an entity that autonomously
executes multi-step tasks by combining generative foundational
models with external tools, memory, and reasoning and planning
capabilities [33]. Agents are designed to operate autonomously in
highly dynamic environments where adaptability and strategic de-
cision making are essential. Each agent is comprised of four key
parts: (i) inputs that may include user instructions, developer-spec-
ified constraints, multimodal observations, retrieved knowledge,
and internal state; (ii) a generative Large Language Model (LLM)
that maps the current state to decisions; (iii) an action interface that
enables tool interactions such as data retrieval, API calls, code exe-
cution; (iv) outputs including user-facing responses and structured
actions and artifacts along with updated state.
Orchestration and deployment. Practitioners orchestrate MAS
through workflows written in agentic programming frameworks
such as LangGraph [25], CrewAI [24], AutoGen [10], LlamaIn-
dex [36], and Agno [37]. Despite the popularity of these third-party
frameworks according to surveys [39, 41], detailed interviews with
practitioners revealed that practitioners preferred to build agentic
applications from scratch in 85% of the cases [41]. These workflows
may be static or dynamic depending on the degree of autonomy al-
lowed by developers in these systems. Currently, MAS are deployed
as single monolithic applications; however, they are increasingly
developed and deployed as distributed applications [9, 46].
Workflow structure. MAS workflows often follow a hierarchical
structure with task structures as a tree of sub-tasks. Individual sub-
tasks follow a mix of sequential and parallel flows. Workflows may
also contain recursive calls for individual agents [39].

2

https://github.com/sands-lab/maestro

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

Failure types.MAS applications showcase three main failure types
— System Design Issues, Inter-Agent Misalignment, Task Verifica-
tion [5]. System design issues include configuration issues, API and
system issues, and resource mismanagement. Inter-agent misalign-
ment issues result from a breakdown in critical information flow
from inter-agent interaction and coordination during execution.
This includes planning and coordination errors, incorrect output
generation, individual LLM hallucinations, and incorrect informa-
tion processing. Task Verification failures arise when verification
strategies are inadequate at identifying issues.
Sources of non-determinism. Due to the dynamic and heteroge-
neous nature of MAS applications, they exhibit non-determinism
due to a multitude of reasons. First, LLMs are stochastic in nature
and often produce different outputs for the same input. Second,
external tool executions are not pre-planned or programmed. Addi-
tionally, tools may produce non-deterministic results. Third, work-
flows are dynamic and change at runtime [53]. Non-determinism
in dynamic workflows may further be exacerbated due to the avail-
ability of agents. Fourth, built-in reliability mechanisms impact
the performance and structure of MAS executions. For example,
quality-driven retries change the execution graph.
Reliability as a first-class citizen. Typical MAS applications treat
reliability as a first-class citizen as part of the design and implemen-
tation of these systems. They do so in multiple ways. First, most
MAS applications rely on Human-in-the-loop evaluation, with al-
most half of the applications executing fewer than five steps before
seeking human-in-the-loop evaluation [41]. In addition, develop-
ers often augment applications with LLM-as-a-judge to automate
quality checks. MAS applications also automate retries to improve
quality if quality checks fail. Second, practitioners prioritize quality
over real-time responsiveness, with 66% of respondents to a recent
survey allowing response times of more than a minute [41]. Third,
practitioners prefer static workflows over dynamic workflows to
constrain the autonomy of deployed agents [41].

2.2 Limitations of existing benchmarks
Evaluating and benchmarking the performance of Large Language
Models has been an important aspect in measuring the efficiency
and efficacy of LLMs at executing real-world tasks [3, 23, 31, 32].
With the recent rise of LLM agents and MAS applications, bench-
marking the performance of agentic systems has garnered a great
deal of interest from the scientific community.
Agent benchmarks. Typical agent benchmarks evaluate capabili-
ties of individual LLMs as agents [4, 27, 35]. These benchmarks have
been further extended to multi-agent settings. To do so, researchers
have developed specialized benchmarks that evaluate a specific
property of agentic systems such as Tool Calling [22, 56], Task
Planning [15], communication strategies [53], sequential flows [2],
privacy preservation [26], and collaboration efficacy [47, 49]. Such
specialized benchmarks solely focus on one specific property or
dimension of MAS applications and lack the holistic view required
to effectively understand the end-to-end emergent behavior and
performance of MAS applications.
Bespoke benchmarks. Due to the lack of standardization and
the diversity of MAS design space, MAS application developers

instead opt to create custom benchmarks specific to their appli-
cation. For example, authors of Autogen [51] created a bespoke
benchmark called Autogenbench [1] for tasks developed in the
Autogen framework. According to a recent survey, 25% of teams
for production MAS applications construct custom benchmarks
for their applications, 75% of teams evaluate their agents without
formal benchmarks and instead rely on A/B testing and direct ex-
pert/user feedback [41]. Although these benchmarks are suitable
for a given specific application, such benchmarks do not capture
the diversity of the MAS design space and do not provide insight
in a broad setting.
Observability tools and benchmarks. Observability tools and
observability-based benchmarks such as Opik [8], TRAIL [11],
TAMAS [39] capture spans and traces of MAS executions which
developers use to further analyze traces to triage issues and to
understand MAS executions. Beyond standard metrics, such as
agent call frequency, external API usage, and per-call token costs,
there remains a significant gap in deep application-semantic teleme-
try. Addressing this requirement involves capturing granular retry
logic details (e.g., attempt counts, triggers, and parent span IDs),
agent-specific status conditions (e.g., failure categorization and er-
ror reasoning), and output quality assessments. Such telemetry is
essential for providing the execution-level transparency needed to
diagnose stochastic failures and understand complex multi-agent
interactions.

3 MAESTRO
We present MAESTRO, a Multi-Agent Evaluation Suite for Testing,
Reliability, and Observability, as a comprehensive framework for
evaluating LLM-based MAS. Building upon goals, we first outline
in §1, we detail the architecture and design of the framework (§3.1),
illustrating how standalone MAS implementations are adapted and
integrated into our suite. To demonstrate MAESTRO’s capacity
for generating informative telemetry, we present a collection of
representative MAS instances (i.e., the concrete evaluation units
in a benchmark suite). These are categorized according to our pro-
posed taxonomy (§3.2), while §3.3 details the specific instances
used and the formulation of evaluation suites designed to derive
our experimental findings.

3.1 Benchmark design
3.1.1 MAESTRO architecture. Figure 1 presents an overview of the
MAESTRO architecture. Conceptually, MAESTRO follows a linear
control flow: preparation of MAS instances, a user-defined configu-
ration specifies how a MAS is instantiated and executed, execution
traces are collected during runtime, and post-hoc processing trans-
forms these traces into interpretable metrics and summaries. The
workflow consists of five core components:
MAS instances preparation. To use MAESTRO, users first need
to prepare MAS instances to be evaluated. The details of the prepa-
ration process and the supported integration modes are described
in §3.1.2.
Configuration. Based on the prepared MAS instances, users spec-
ify the evaluation setup, including which input sources, the number
and configuration of agent instances, and whether external tool

3

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

MAS Input

Runtime

Post-processing

MAS Configuration

LLM

Agents

Tool Set

Observation

Native Artifacts

Public Datasets

Synthetic Inputs

…

Configuration

…

Output
MAS Output Telemetry Data

CPU, Mem Call Graph Acc., Fail.

Insights
&

Findings

MAS Instances Preparation

…

Token Budget …

In
pu

t L
ay

er
Ex

ec
ut

io
n

La
ye

r
An

al
yz

in
g

La
ye

r

…

Figure 1:MAESTRO architecture overview.

access is enabled1. This configuration is passed to the Runtime
component for system instantiation and execution.
Runtime. Based on the provided configuration, Runtime compo-
nent orchestrates the execution of the MAS instances. Task inputs
are continuously fed into the runtime, triggering agent interac-
tions, tool invocations, and control-flow decisions as defined by the
configuration.
Observation. During execution, the Observation component mon-
itors system behavior through function-call hooks or sampling-
based instrumentation. Built on top of OpenTelemetry [40] and
psutil [43], it records both default execution metrics (e.g., latency,
token usage; see §A.2.1) and additional signals specified in the con-
figuration. Collected traces are forwarded, either online or offline,
to the Post-processing component.
Post-processing. The Post-processing component aggregates and
analyzes execution traces to make MAS behavior inspectable (e.g.,
CPU, call graph; see §A.1). These summaries enable users to explore
execution trajectories, compare configurations across runs, and
identify performance bottlenecks and sources of instability.

3.1.2 MAS instances preparation. Before performing any evalua-
tion, MAS instances must be integrated into MAESTRO. As illus-
trated in Figure 2, users can prepare MAS instances in two ways:2

• MAESTRO-native. Users can implement MAS instances directly
using MAESTRO’s native specification language and configura-
tion interfaces. Thismode leverages compile-based techniques [9]
to automatically generate executable instances from high-level

1Currently, MAESTRO only supports the adjustment of a few parameters, such as
model choice and tool usage.
2At present, MAESTRO supports only pre-defined MAS instances.

MAESTRO Framework

3rd -party Framework
IntegrationMAESTRO-native

User-Written Code

Compiler

MAS instances

Third-party MAS

Transformation Layer

MAS instances

User

Figure 2: Two ways to prepare MAS instances for MAESTRO,
note that MAESTRO ships with a set of built-in MAS in-
stances that can be used and compared directly.

descriptions, ensuring optimal compatibility. This mode reduces
manual coding effort by generating reusable scaffolding and in-
tegration code for common components.

• Third-party framework integration. Through MAESTRO’s
transformation layer, users can build MAS instances in their
preferred agent frameworks (e.g., ADK, LangGraph, AutoGen) or
import existing open-source implementations, and connect them
to MAESTRO for evaluation. The transformation layer provides
a set of adapters that map framework-specific components onto
MAESTRO’s standard interfaces, exposing unified entry points
for configuration, execution, and telemetry collection.

MAESTRO contributors can also use these two integration modes to
add new built-in MAS instances to the framework. Currently, MAE-
STRO has 12 built-in MAS instances (described in detail in §3.3),
allowing users to perform evaluations and comparisons directly
without additional integration effort.

3.2 MAS instances taxonomy
Awell-designed benchmark should cover a broad (O1) and represen-
tative (O2) range of system configurations and use cases; otherwise,
conclusions may overfit to a narrow slice of the MAS design space
and fail to generalize. To enable systematic coverage and controlled
comparisons, we characterize each MAS instance using a small set
of well-defined dimensions. Specifically, we describe each instance
along the following axes: application field, framework, interaction
pattern, and data specification. These dimensions together capture
the primary sources of variation in modern MAS deployments.
Application field. The high-level domain that the MAS instance
targets, which may influence task complexity, required agent ca-
pabilities, and evaluation criteria. Common fields include question
answering, creative generation, finance, and others.
Framework. The underlying multi-agent framework used to imple-
ment the MAS instance, which may affect agent orchestration, com-
munication protocols, and tool integration. General frameworks
include AutoGen [51], ADK [17], LangGraph [25], and others.
Interaction pattern. The specific configuration of agents within
the MAS instance, including the number of agents, the number

4

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

of tools, and the cooperation type. Specifically, cooperation types
include:
• Planning. There is a dedicated planning agent that decomposes
the task into subtasks and assigns them to other agents.

• Coordination. Agents coordinate their actions through explicit
communication.

• Debate. Agents evaluate and compare candidate solutions to reach
a consensus.

• Correction. Agents collaboratively refine and improve a specific
solution through iterative feedback.

These interaction patterns could affect the overall system dynamics
and performance.
Data specification. The concrete input-output format and ground
truth used to instantiate the MAS instance, which may influence
task complexity, communication pattern, and evaluation criteria.
The data specification could be divided into input and output.

• Input. A task is typically instantiated via a system prompt
defining its core objectives and constraints. For tasks requir-
ing open-ended exploration, the configuration phase may
also incorporate external information retrieved through aux-
iliary tools, such as web search engines or private databases,
as supplemental inputs. Collectively, we define these struc-
tured inputs and retrieved data as artifacts.

• Output. According to whether the output has a determined
ground truth, the output could be divided into Open-End and
Closed-Form.

3.3 MAS example suites studied
We carefully select 12 representative MAS instances to serve as
the pre-defined evaluation set in MAESTRO. These instances are
designed to provide sufficient coverage of common MAS configura-
tions and use cases (O1, O2), and to act as a baseline for subsequent
studies. As summarized in Table 2, the selected instances are chosen
according to the following criteria:
• Framework diversity (O2, O3): We include examples imple-
mented using different popular MAS frameworks, such as MCP-
Agent, LangGraph, ADK, and Autogen, to capture a wide range of
design patterns and interaction paradigms.

• Official sources (O2): We collect examples that are provided
in the official example repositories or tutorials of these frame-
works, ensuring that they reflect best practices and standard
usage patterns.

• Domain variety (O2): We select examples that cover diverse
application domains, including question answering, planning,
creative writing, marketing strategy, and so on, to evaluate MAS
performance across different application scenarios.

• Interaction diversity (O1): We prioritize examples that exhibit
varied interaction patterns among agents, such as cooperative
problem solving, debate-style discussions, and role-based collab-
orations, to assess how different interaction styles affect MAS
behavior.
As a prerequisite for meaningful analytical post-processing, MAS

instances must be grouped into coherent categories that share rele-
vant characteristics. Such grouping enables comparative analysis
across multiple configurations, ensuring that observed behaviors

HotpotQA

Planner

Plan &

Execute

Replanner

LLM-as-Judge (with gold answer)

CRAG LATS

Retriever

Grader

Question
Rewriter

Generator

Resp.
Drafter

Reflection

Expansion
Executor

Web
Search

Tool

Figure 3: Solving the same given tasks with 3 different MAS
architectures.

reflect systematic trends rather than ad hoc artifacts of individ-
ual runs. To demonstrate the analytical capabilities of MAESTRO,
we derive two evaluation suites, each designed to surface distinct
system-level insights.
• Full-suite (F): This suite includes all selected MAS examples.
We treat this suite as a representative subset of real-world MAS
deployments, and use it to study the overall performance and
behavior of LLM-based MAS in realistic settings.

• Architecture-focused suite (A): This suite includes three repre-
sentative MAS examples that implement different representative
multi-agent architectures but solve the same set of tasks. This
suite is used to study the impact of agent architectures on MAS
behavior.
In the architecture-focused suite, we select three representative

MAS architectures: CRAG (Corrective RAG) [54], Plan&Execute [48],
and LATS (Language Agent Tree Search) [59]. They are designed
as general-purpose agent architectures that can operate across
tasks without being tightly coupled to specific applications. How-
ever, their design goals differ. As shown in Figure 3, CRAG is opti-
mized for retrieval-centric workloads, whereas LATS and Plan-and-
Execute target more general problem-solving settings, employing
tree-search–based divide-and-conquer and greedy iterative refine-
ment strategies, respectively. Such variety in the task-solver archi-
tectures enables the following comparative studies.

In the following section, we present case studies and analyses
using MAESTRO, organized around these two MAS example suites.

4 Case studies
To demonstrate how researchers can benefit from MAESTRO, we
conduct a series of case studies that illustrate the types of insights
enabled by its fine-grained telemetry. We organize our evaluation
into two complementary sets of case studies:
• General system-level analysis. In §4.2 and §4.3, we examine
system-level metrics that are not specific to MAS, but instead
provide a familiar baseline for reasoning about performance,
resource consumption, and reliability, analogous to evaluations
in traditional systems.

5

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

Table 2: Selected MAS examples overview. The “Suite” column indicates membership, F: Full Suite; A: Architecture Suite.

Example App. Field Framework
Interaction Data Spec.

Suite
Type #Agt #Tool In Out

Fin. Analyzer [29] Finance MCP-Agent Correct 6 1 Artifacts Opn-End F
Img. Scr. [16] Creativity ADK Debate 4 2 Artifacts Cls-Form F
Marketing [16] Marketing ADK Coord. 4 1 Artifacts Opn-End F
Brand SEO [16] Marketing ADK Coord. 4 10 Artifacts Opn-End F

Content Creat. [42] Creativity ADK Plan. 4 1 Artifacts Opn-End F
Mag.-One [14] Cross-domain Autogen Plan 4 0 Artifacts Opn-End F
Stock Res. [10] Finance Autogen Coord. 4 2 Artifacts Opn-End F
Travel Plan. [38] Travel Autogen Coord. 4 0 Artifacts Opn-End F

ToT [57] Cross-domain LangGraph Debate 3 0 Artifacts Cls-Form F
CRAG [54] Cross-domain LangGraph Coord. 5 2 Datasets Opn-End F,A

Plan&Exec. [48] Cross-domain LangGraph Plan 3 1 Datasets Opn-End F,A
LATS [59] Cross-domain LangGraph Plan 3 1 Datasets Opn-End F,A

• Application- and semantics-aware analysis. Using Evalua-
tion Suite 2, we investigate how different MAS solver architec-
tures affect cost, latency, and accuracy (§4.4, §4.5, §4.6, and §4.7).
This analysis explores whether architectural choices and struc-
tural optimizations lead to consistent performance trade-offs, in
a manner analogous to ablation studies.

4.1 Methodology
Inputs. For each MAS instance, we generate evaluation inputs
using one of the following three approaches:

• Naive artifacts. Direct reuse of input prompts provided in the
README files of official example repositories.

• Public datasets. Inputs drawn from publicly available bench-
mark datasets aligned with the task domain of the MAS instance
(e.g., question-answering datasets for QA-oriented agents [55]).

• Synthetic inputs. LLM-generated prompts that enable con-
trolled variation and increased input diversity.

Setup. For each MAS instance, we conduct at least 20 indepen-
dent runs to characterize execution behavior. Each run consists
of submitting a single user-level task input to the MAS (e.g., a
single “write a blog post” prompt for Content Creation). For MAS in-
stances that require human-in-the-loop interaction, user responses
are simulated using an LLM-as-user approach, where a designated
LLM (gemini-2.5-flash in our current setup) generates replies
conditioned on the MAS outputs. To prevent non-terminating ex-
ecution, each run is capped at 10 minutes. For the architecture-
focused suite, LLM responses are additionally limited to a maxi-
mum of 8,192 tokens. As for the external tool usage mentioned
in Table 2, we use Tavily or Google Search [18] for web search,
and use Google imagen-3.0-generate-002 [19] model for image
generation. When correctness evaluation is required, we employ
gpt-4o-mini as an LLM-as-judge. To evaluate the impact of differ-
ent backbone models, we vary the underlying LLM across several

configurations: Gemini-2.0-Flash-Lite (Ge20FL), Gemini-2.5-Flash-
Lite (Ge25FL), Gemini-2.5-Flash (Ge25F), GPT-4o-mini (G4oM), GPT-
5-mini (G5M), and GPT-5-nano (G5N).

4.2 What are the systems usage patterns and
implications?

Resource consumption such as CPU, memory, and network usage
are important factors to consider when deploying MAS in real-
world systems. Understanding the resource usage patterns of MAS
can help optimize their performance and scalability. In this subsec-
tion, we analyze the resource consumption of MAS and investigate
the factors that influence their usage patterns.
Per-taskCPUandmemory footprints aremodest and bounded
in our setup. Figure 4 reports per-run CPU and memory usage
across the 12 MAS examples under our runtime configuration. For
CPU, the maximum observed utilization reaches 61.9%, while the
boxplot distributions for most examples remain substantially be-
low this peak, suggesting that these workloads typically do not
require sustained heavy local compute. For memory, excluding
the Content Creation example which peaks at 1726.8MB, the av-
erage memory usage across examples is 200.2MB, placing most
single-task executions in a sub-GB regime in our measurements.
The Content Creation example’s higher memory footprint stems
from its distributed design, where each agent runs in a separate pro-
cess, increasing the aggregate resident memory. We leave a broader
study of distributed MAS deployments and their resource trade-offs
to future work. We also observe framework-dependent memory
patterns; for example, examples implemented with ADK tend to
exhibit higher memory footprints in our setup.
Per-task communication volume is in theMB scale and varies
by architecture andmodel.We further measure total communica-
tion volume across architectures with and without tools (Figure 5).
Across all tested configurations, the observed communication vol-
umes staywithin theMB scale (withmost cases within a fewMB), in-
dicating that, per task, network payload is typically small compared

6

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

0

20

40

60

C
P

U
 (

%
)

Bra
nd

 S
EO

Mar
ke

tin
g

Im
g.

Scr.

Con
ten

t C
re

at.

CRAG
To

T
LA

TS

Plan
 an

d E
xe

c.

Fin.
 A

na
lyz

er

Mag
.­O

ne

Stoc
k R

es
.

Tr
av

el
Plan

.

Bra
nd

 S
EO

Mar
ke

tin
g

Im
g.

Scr.

Con
ten

t C
re

at.

CRAG
To

T
LA

TS

Plan
 an

d E
xe

c.

Fin.
 A

na
lyz

er

Mag
.­O

ne

Stoc
k R

es
.

Tr
av

el
Plan

.
0

500

1000

1500

M
em

or
y

(M
B

)

Figure 4: CPU and memory usage across different examples.

to CPU and memory footprints. It can be observed that tool usage
has a minor impact on communication volume. Model choice also
interacts with architecture; for example, in CRAG, Gemini-family
models show larger communication volumes than GPT-family mod-
els in our measurements.

Finding 1: In our setup, most single-task executions stay within
a sub-GB memory regime and bounded CPU utilization, while
per-request communication remains at the MB scale.

CPU andmemory usage patterns are architecture-dependent.
Figure 6 illustrates the CPU and memory usage grouped by archi-
tecture. Consistent with the communication patterns observed in
Figure 5, resource consumption is highly architecture-dependent.
CRAG exhibits the highest resource footprint, with an average CPU
usage of 9.7% and memory usage of 405.3MB (averaged over all
model and tool configurations). This is followed by Language Agent
Tree Search (1.36% CPU) and Plan-and-Execute (0.07% CPU). We
further observe that while model choice influences CPU load, it
has a negligible impact on memory. Surprisingly, enabling tools
reduces global average CPU usage by 3.1% and memory by 4.8MB.
This phenomenon could be explained by the fact that tool usage
could help reduce the number of LLM calls, which are CPU and
memory-intensive.

Finding 2: Architecture dominates resource patterns, while
model choice introduces smaller shifts.

4.3 How stable are MAS call graphs, and what
factors influence their variability?

A distinguishing characteristic of LLM-based MAS, in contrast to
traditional systems like microservices, is the inherent stochasticity
of their execution behavior. In microservice architectures, call graph
variability is widely used as an indicator of anomalous executions
and edge cases. By extending this concept to MAS, one can leverage
variability to sample a diverse and representative set of execution
traces. However, a foundational stability analysis is a prerequisite
for such methodologies. From a reproducibility perspective, higher
call graph similarity across repeated runs implies stronger run-to-
run consistency in agent interactions, and thus more reproducible
MAS executions. Therefore, quantifying the stability of agent inter-
actions across different runs and identifying the factors influencing
their variability are crucial for designing robust and reproducible
MAS.

We use two metrics to measure the call graph similarity: Jaccard
similarity and Largest Common Sequence (LCS) similarity. These
metrics capture different aspects of the call graph structure and
provide insights into the agent interactions.

• Jaccard similarity (edge-set overlap): For each run 𝑖 , we
construct a directed call graph 𝐺𝑖 and denote by 𝐸𝑖 its (un-
weighted) edge set. For runs 𝑖, 𝑗 , we compute

𝐽 (𝐸𝑖 , 𝐸 𝑗) =
|𝐸𝑖 ∩ 𝐸 𝑗 |
|𝐸𝑖 ∪ 𝐸 𝑗 |

,

with the convention 𝐽 (𝐸𝑖 , 𝐸 𝑗) = 0 when 𝐸𝑖 ∪ 𝐸 𝑗 = ∅. This
captures whether the same interaction edges appear at least
once, regardless of frequency.

• LCS (order consistency): For each run 𝑖 , we linearize the
calls into an ordered edge sequence 𝑆𝑖 . Let LCSlen(𝑆𝑖 , 𝑆 𝑗)
denote the length of the longest common subsequence be-
tween 𝑆𝑖 and 𝑆 𝑗 . We define the normalized LCS similarity
as

LCS(𝑆𝑖 , 𝑆 𝑗) =
LCSlen(𝑆𝑖 , 𝑆 𝑗)
max(|𝑆𝑖 |, |𝑆 𝑗 |)

,

with the convention that two empty sequences yield 1 and
one empty sequence yields 0. This measures the consistency
of interaction order.

To summarize similarity at different granularities (e.g., per ex-
ample, per model, or per experimental condition such as tool-on
vs. tool-off), we first partition runs into groups according to the di-
mension of interest. For a group with 𝑛 runs, we compute similarity
values for all unordered run pairs (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. For each
pair, we compute 𝐽 (𝐸𝑖 , 𝐸 𝑗) and LCS(𝑆𝑖 , 𝑆 𝑗). We define the pairwise
average similarity for a group as the mean of these pairwise values
over all unordered run pairs in that same group. If 𝑛 < 2, we set
the pairwise average similarity to 0 (no pairwise comparisons are
available).
MAS execution exhibits structural stability but sequential
variance. We first examine the stability of call graphs across re-
peated runs of the same example. Figure 7 presents the intra-example
average pairwise similarity for the Full Suite.We observe that across
all cases there exists high Jaccard similarities (average 0.86 across
all examples), indicating that the set of agent-to-agent interactions

7

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

G5M G5N
G4o

M

Ge2
5F

Ge2
5F

L

Ge2
0F

L

0.002

0.004

0.006

0.008

0.010

To
ta

l c
om

m
un

ic
at

io
n

(M
B

)

CRAG

with­tavily
without­tavily

G5M G5N
G4o

M

Ge2
5F

Ge2
5F

L

Ge2
0F

L
0.0

0.2

0.4

0.6

0.8

To
ta

l c
om

m
un

ic
at

io
n

(M
B

)

LATS

G5M G5N
G4o

M

Ge2
5F

Ge2
5F

L

Ge2
0F

L
0.0

0.5

1.0

1.5

2.0

To
ta

l c
om

m
un

ic
at

io
n

(M
B

)

Plan­and­Execute

Figure 5: Communication usage across different architectures.

CRAG LATS Plan­and­Execute
0

5

10

15

C
P

U
 (

%
)

with­tavily ­ CPU

CRAG LATS Plan­and­Execute
0

5

10

15

C
P

U
 (

%
)

without­tavily ­ CPU

CRAG LATS Plan­and­Execute
0

100

200

300

400

M
em

or
y

(M
B

)

with­tavily ­ MEM

CRAG LATS Plan­and­Execute
0

100

200

300

400

M
em

or
y

(M
B

)

without­tavily ­ MEM
G5M G5N G4oM Ge25F Ge25FL Ge20FL mean across models per architecture

Figure 6: CPU and memory usage across different architectures.

0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
Ja

cc
ar

d

Bra
nd

 S
EO

Mar
ke

tin
g

Im
g.

Scr.

Con
ten

t C
re

at.

CRAG
To

T
LA

TS

Plan
 an

d E
xe

c.

Mag
.­O

ne

Stoc
k R

es
.

Tr
av

el
Plan

.

Bra
nd

 S
EO

Mar
ke

tin
g

Im
g.

Scr.

Con
ten

t C
re

at.

CRAG
To

T
LA

TS

Plan
 an

d E
xe

c.

Mag
.­O

ne

Stoc
k R

es
.

Tr
av

el
Plan

.
0.0

0.2

0.4

0.6

0.8

1.0

P
ai

rw
is

e
LC

S

Figure 7:Cross-model call graph similarity (Jaccard Similarity:
Order-agnostic overlap of agent interactions, LCS Similarity:
Order-aware similarity of execution traces).

remains robust against execution variance. In contrast, LCS simi-
larity is moderate (average 0.65), suggesting that the sequence of

Ge2
0F

L

Ge2
5F

Ge2
5F

L

G4o
M

G5M G5N

Ge20FL

Ge25F

Ge25FL

G4oM

G5M

G5N

CRAG

Ge2
0F

L

Ge2
5F

Ge2
5F

L

G4o
M

G5M G5N

LATS

Ge2
0F

L

Ge2
5F

Ge2
5F

L

G4o
M

G5M G5N

Plan­and­Execute

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

si
m

ila
rit

y

Figure 8: Cross-model call graph LCS similarity.

agent calls fluctuates significantly across runs. Notably, examples
like CRAG and Tree-of-Thoughts demonstrate high Jaccard but low
LCS scores, confirming that while the participating agents and their
connections remain consistent, the temporal order of their interac-
tions is highly dynamic. A distinct exception is the travel-planning
example, which employs the RoundRobinGroupChat mechanism
from Autogen; this enforces a deterministic execution order, result-
ing in perfect stability (1.0) for both metrics.

Finding 3: Across runs, MAS call graphs are largely stable in
which agent-to-agent interactions occur, but often unstable in
the order those interactions unfold; consequently, reproducibil-
ity is stronger at the interaction-structure level than at the
execution-order level.

8

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

Architecture determines stability, while model impact is
architecture-specific. We further investigate the factors influenc-
ing call graph similarity by comparing execution patterns across
different models and architectures. Figure 8 presents the cross-
model LCS call graph similarity heatmap, where each sub-figure
corresponds to an architecture and each cell represents the me-
dian pairwise similarity between two models. We observe distinct
stability profiles across architectures: CRAG exhibits extremely
high consistency (average similarity 0.97 across all model pairs),
whereas Language Agent Tree Search (0.54) and Plan-and-Execute
(0.47) show significantly more variation. Furthermore, the impact
of model choice is architecture-dependent. In CRAG, most models
share identical call graphs, with gemini-2.5-flash-lite being
the sole outlier. In Language Agent Tree Search, all models produce
similar call graphs. Conversely, for Plan-and-Execute, gpt-4o-mini
diverges significantly from other models by showing low similarity
to them, yet it remains highly self-consistent across its own runs,
while the remaining models tend to resemble one another.

Finding 4:MAS architecture dominates the call graph similarity,
with model choice having different effects depending on the
architecture.

We then move to application-level metrics, including cost, task
duration, and accuracy. Due to the inherent non-determinism of
LLMs, accuracy can vary across runs; ensuring result quality there-
fore often correlates with increased cost and longer execution time.
MAESTRO enables systematic analysis of such behavior despite the
chaotic nature of LLM-driven execution. To ensure fair comparison
across configurations, the following evaluation focuses exclusively
on the Architecture Suite, which supports finer-grained analysis.

4.4 How do different agent architectures affect
task performance and stability?

More general-purpose solver architectures, designed to handle a
wide range of complex tasks, tend to progress more cautiously. To
ensure robustness, they often pause at each iteration to reflect on in-
termediate states. For example, Plan-and-Execute first decomposes
the overall goal into a sequence of milestones and then solves each
subtask incrementally. This approach helps the model maintain
a comprehensive understanding of task context and often yields
more reliable outcomes, but at the cost of increased execution time
and resource consumption.

In contrast, when the task type is known in advance, a more
specialized architecture can be employed. CRAG, for instance, is
explicitly designed for retrieval-based workloads. Rather than ex-
ploring alternative reasoning paths, it prioritizes directly answering
the query with minimal detours. This objective-driven design at-
tempts to solve the task as early as possible, even with incomplete
background information, trading exploration for efficiency. Such
differences in design philosophy lead to substantial divergence in
execution behavior across architectures.
Specialized solverminimizes resource consumption.As shown
in Figure 9a, CRAG consistently occupies the lower-cost and lower-
latency region across different model choices. In particular, CRAG
achieves a median cost of $0.0010 per task, which is more than

an order of magnitude lower than both Plan-and-Execute (median
$0.0126) and LATS (median $0.0101). CRAG also executes faster,
with a median task duration of 42.8 s, compared to 101.5 s for Plan-
and-Execute.

In contrast, Plan-and-Execute exhibits substantially higher vari-
ance in task duration (interquartile range 30.6–356.6 s), reflecting
the overhead introduced by iterative planning and execution. LATS
achieves relatively low median latency (32.3 s), but incurs higher
resource cost overall.
Accuracy degrades with increasing architectural complex-
ity. Furthermore, Figure 9b shows that CRAG attains accuracy
comparable to, and in some cases exceeding, more general architec-
tures. CRAG achieves an average accuracy of 70.6%, compared to
48.3% for Plan-and-Execute, while also exhibiting lower variability
across runs. These results indicate that task-specialized agent ar-
chitectures can simultaneously reduce resource consumption and
maintain strong task performance.

Notably, increased architectural complexity does not necessarily
translate into higher accuracy and may even be detrimental. While
it is tempting to introduce additional agents – such as fact-checkers
or verification stages – to enforce desired behavior, such designs
inevitably increase execution cost and prolong interaction histories.
In our evaluation, Plan-and-Execute spends substantially more
time reasoning over tasks yet achieves lower accuracy (average
48.3% vs. 70.6% for CRAG), despite incurring significantly higher
execution cost. This behavior aligns with prior findings that model
performance degrades as interaction histories grow longer, due to
diminishing attention to earlier context and error accumulation in
extended reasoning chains [34].

Finding 5: More general agent architectures consume more
resources and do not consistently improve accuracy.

4.5 How does model choice affect MAS
behavior?

A natural assumption in LLM-based MAS design is that upgrading
the underlying model should improve system performance. Intu-
itively, scaling to more capable models is expected to increase cost
while yielding higher accuracy. However, our experimental results
challenge this assumption. We find that stronger models do not
necessarily incur substantially higher costs in practice, nor do they
consistently lead to improved correctness. Instead, model choice
affects MAS behavior in more nuanced and sometimes counterin-
tuitive ways.
Stronger models reduce iteration overhead rather than total
cost. More capable models often complete subtasks with fewer
iterations, reducing pathological behaviors such as repeated retries
or prolonged refinement loops. However, these efficiency gains
primarily offset higher per-token pricing rather than translating
into lower overall cost. For example, gpt-5-mini and gpt-5-nano
exhibit comparable mean cost per task (0.033 vs. 0.043), despite
differences in model size, while gpt-4o-mini achieves substan-
tially lower median cost (0.0034) than both. Similarly, execution
latency is non-monotonic: gpt-4o-mini completes tasks faster (me-
dian 45.3 s) than the larger 5-series models, whereas gpt-5-nano

9

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

0 100 200 300 400
Median duration per task (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ed

ia
n

co
st

 p
er

 ta
sk

 ($
)

Latency vs Cost per Task, by Architecture

Architecture / Accuracy
Plan-and-Execute
CRAG
LATS
acc 0.75
< 0.75

(a) Latency versus cost per task, grouped by agent
architecture. Lower values on both axes indicate
better performance.

0.0 0.1 0.2 0.3 0.4
Cost per task ($)

Cost consistency

0 500 1000 1500
Duration per task (s)

Duration consistency

0 25 50 75 100
Accuracy (%)

Accuracy by architecture
Cost/Duration/Accuracy, by Architecture

LATS
CRAG
Plan-and-Execute
Per-model accuracy

(b) Distribution of cost, latency, and accuracy across agent architectures; specialized
designs (e.g., CRAG) achieve stable accuracy at lower cost.

Figure 9: Resource cost versus accuracy across agent architectures. Task-specific designs such as CRAG achieve comparable
accuracy with lower resource cost than more general architectures like LATS.

is slower than gpt-5-mini despite being nominally smaller. These
results indicate that model choice influences iteration efficiency
and tail behavior, but does not induce a clear cost hierarchy.
Accuracy exhibits non-monotonic and unstable trends across
models. We further observe no consistent relationship between
model strength and task accuracy. While gpt-5-mini achieves the
highest accuracy (median 81%), weaker or similarly priced models
do not follow a predictable trend: gpt-5-nano trails at 65%, and
gpt-4o-mini exhibits high median accuracy (71%) but a substan-
tially lower mean (48%), indicating unstable behavior with heavy
failure cases. Gemini models cluster around similar accuracy levels
(approximately 66%), with the 2.0-lite variant performing worse
overall. These results suggest that MAS accuracy is highly sen-
sitive to execution dynamics and variance amplification, rather
than model capacity alone, and that upgrading the base model is
insufficient to guarantee improved correctness.

Finding 6: Upgrading the base LLM does not reliably reduce cost
or improve accuracy in MAS, as execution dynamics dominate
model-level gains.

4.6 What are the dominant failure modes in
LLM-based multi-agent systems?

We find that most failures manifest as silent gray errors (75.17%
in Table 3), which do not trigger explicit system failures and are
therefore not immediately visible to users. These errors only be-
come apparent upon manual inspection of the output. Importantly,
such failures are not system-level exceptions, but rather plausible-
looking yet unusable responses. As a result, failure attribution in
LLM-based MAS is particularly challenging, since erroneous execu-
tions often complete without emitting any hard error signals.

0.0 0.1 0.2 0.3 0.4
Cost per task ($)

G5M

G5N

G4oM

Ge25F

Ge25FL

Ge20FL

0 500 1000 1500
Duration per task (s)

0 20 40 60 80 100
Accuracy (%)

Architecture

LATS
CRAG
Plan-and-Execute

Figure 10: Cost–duration–accuracy trade-offs across LLMs; ef-
ficiency improves for Gemini-family models, while accuracy
shows no clear scaling trend.

We further break down failure causes by model in Figure 11a,
which reveals distinct, model-specific failure signatures. Rather
than failing uniformly, different LLM backends exhibit characteris-
tic behaviors when errors occur.
Model-specific failure patterns.

• Gemini-2.0-flash-lite predominantly fails by producing
underspecified or incomplete outputs, where a response is
returned but lacks sufficient detail to satisfy task require-
ments.

10

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

Table 3: Global failure composition across all experiments.

Failure category Percentage (%)

Missing / underspecified output 47.61
Wrong fact / entity 27.66
Empty prediction 15.96
Exception 6.38
Timeout 1.86
Other 0.54

Silent semantic failures 75.17
Explicit failures 24.84

• Gemini-2.5-flash-lite exhibits a more conservative failure
mode, frequently abstaining and returning empty or null
outputs when uncertain.

• GPT-4o-mini tends to produce fully formed but factually in-
correct responses, committing confidently to wrong entities
or facts rather than omitting answers.

These distinct failure signatures indicate that MAS failures are
not only model-dependent, but also shaped by how agent archi-
tectures interpret and propagate partial outputs. Consequently,
failures emerge as execution-path–dependent phenomena rather
than isolated faults attributable to a single component.

Finding 7: MAS failures predominantly manifest as silent se-
mantic errors, with distinct, model-specific failure signatures
that are amplified by execution dynamics.

Divergent failure attribution across LLM-as-judges. To assess
the reliability of LLM-as-judge–based failure attribution, we per-
form offline analysis using three additional judge models, each
provided with the final MAS response and the corresponding gold
answer. As shown in Figure 11b, offline attribution struggles to cor-
rectly identify system-level failures, such as exceptions or timeouts,
due to the absence of runtime execution signals.

For example, a MAS execution may enter a non-terminating
review loop that repeatedly generates responses containing the
correct answer but never produces a valid final output. During
online execution, such behavior is correctly identified as a failure,
since the task does not terminate successfully. In contrast, an offline
judge, which only observes the final response and history, may
incorrectly classify the execution as successful because the correct
answer appears in the trace.

Even for semantic-based gray failures, where judges often agree
on whether an execution is broadly correct or incorrect (e.g., all
judges consistently identify CRAG executions as successful), sub-
stantial divergence arises in the attribution of failure types. For
instance, when a MAS responds with: “I am sorry, I cannot answer
this question. The available tools do not have the functionality to de-
termine the country of a member of the Gujarat Legislative Assembly
and parliament.” the gpt-oss-120b judge classifies this outcome
as an empty prediction, whereas gemini-2.5-flash attributes it to
a wrong fact/entity.

These discrepancies highlight that, even under identical inputs
and failure definitions, LLM-based judges may disagree on fine-
grained failure attribution, underscoring the inherent subjectivity
and instability of offline, semantics-only failure analysis.

4.7 How does tool usage impact cost and
accuracy?

A common assumption in LLM-based MAS design is that enabling
external tools should improve task performance. By equipping
agents with additional information sources or capabilities, one
would expect higher-quality outputs and, consequently, improved
accuracy. However, our results indicate that the impact of tool usage
is highly dependent on the underlying agent architecture.
Enabling web search commonly increases resource consump-
tion.Overall, enabling external tools tends to increase resource con-
sumption, but accuracy gains are not uniform across architectures.
As shown in Figure 12a, tool usage introduces different overheads
depending on how tools are integrated into the execution workflow.
For CRAG, external tools primarily increase monetary cost, with
a median cost increase of $0.0010 per task and a modest median
latency increase of 8.1 s, reflecting additional retrieval and process-
ing steps. In contrast, Plan-and-Execute experiences a substantial
increase in task duration, with a median latency increase of 34.1 s,
while its monetary cost slightly decreases, indicating that overhead
is shifted toward longer execution rather than additional token
usage. LATS exhibits the highest overall overhead, with tool usage
increasing both execution time and cost, suggesting compounded
interaction and coordination overheads.
When web search reduces task duration. While external tools
typically introduce additional overhead, we observe notable outliers
where web search reduces overall execution cost and latency. In
particular, for CRAG with gpt-5-nano, enabling web search results
in faster task completion (by approximately 2 s on average). This
effect arises because, in the absence of external evidence, the model
tends to generate longer, more speculative responses, increasing
both token usage and per-round LLM latency. Trace-level analysis
confirms this behavior: in no-search executions, the generator and
grader produce longer outputs, substantially increasing per-call
latency, whereas providing web evidence shortens responses and
reduces LLM latency (median generator time 11.2 s to 6.1 s). As a
result, CRAG with web search achieves 13.9% lower mean task du-
ration despite the additional retrieval step, indicating that external
context can reduce speculative reasoning and offset tool overhead.
When web search reduces planning cost. For Plan-and-Execute,
enabling web search often leads to a net reduction in cost, as ex-
ternal evidence allows the planner to generate more concrete and
concise plans. Without web search, the planner tends to produce
longer, speculative plans, and the replanner emits more verbose
messages to justify or revise these plans, inflating token usage.

Trace-level evidence supports this observation: across models,
planner messages are substantially shorter when web search is
enabled (e.g., average planner tokens drop from over 1,500 to a
few hundred per call), and replanner turns are also more concise.
Although the number of planning or replanning iterations may

11

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

Missin
g

Empty
Wrong

Exception
Timeout

Failure category (% of model failures)

P&E / Ge20FL
 Ge25F

 Ge25FL
 G4oM
 G5M
 G5N

CRAG / Ge20FL
 Ge25F

 Ge25FL
 G4oM
 G5M
 G5N

LATS / Ge20FL
 Ge25F

 Ge25FL
 G4oM
 G5M
 G5N

judge: G4oM

0

20

40

60

80

100

Pe
rc

en
t o

f m
od

el
 fa

ilu
re

s

(a) Online failure attribution via LLM-as-judge
(GPT-4o-mini).

Missin
g

Empty
Wrong

Exception
Timeout

judge: Ge25F

Missin
g

Empty
Wrong

Exception
Timeout

Failure category (% of model failures)

judge: G4o

Missin
g

Empty
Wrong

Exception
Timeout

judge: OSS120B

0

20

40

60

80

100

Pe
rc

en
t o

f m
od

el
 fa

ilu
re

s

(b) Offline failure attribution via LLM-as-judge (Gemini-2.5-Flash, GPT-4o, GPT-OSS-
120B).

Figure 11: Failure attribution using different LLM judges. We prioritize online attribution when possible, as it incorporates
runtime signals unavailable offline, such as execution stalls and incomplete system outputs. For offline attribution, judges are
provided with the final MAS response, the corresponding gold answer, and an identical failure taxonomy. Despite controlling
inputs, attribution results exhibit substantial variance across judgemodels, highlighting the inherent subjectivity and instability
of LLM-based failure attribution.

remain similar – or even increase slightly – the reduction in per-
turn token usage outweighs the cost of the additional web retrieval
step, resulting in lower overall execution cost.

Finding 8: By providing external context, tools can reduce spec-
ulative generation, lowering inference time and cost.

Web search boosts accuracy, but non-uniformly across archi-
tectures. Tool usage yields markedly different outcomes across
agent architectures. As shown in Figure 12b, CRAG consistently
benefits from external tools, achieving a median accuracy improve-
ment of 35.7% and improving accuracy in 83.3% of evaluated runs.
In contrast, Plan-and-Execute loss minor median accuracy, with
improvements observed in only one third of runs. LATS shows
marginal and unstable gains, with a median accuracy improvement
of 4.2% and positive effects in only half of the cases.

In conclusion, these accuracy trends align with the associated
cost and latency overheads. CRAG incurs only modest increases
in cost and execution time, whereas Plan-and-Execute primarily
shifts overhead to longer execution latency, and LATS experiences
increases in both cost and latency. Together, these results indicate
that external tools improve MAS performance only when the un-
derlying architecture can incorporate them without amplifying
execution complexity or instability.

Finding 9: External tools improve accuracy only when the agent
architecture can integrate them without amplifying execution
overhead or variance.

5 Discussion
While MAESTRO already provides valuable insights into the be-
havior of LLM-based MAS, significant opportunities for extension
remain.

5.1 Limitation
Generalizability. Given the inherent heterogeneity (D1) of LLM-
based MAS, it is difficult to identify a single canonical architecture
or execution pattern that generalizes across all agentic systems.
The design space of MAS continues to evolve rapidly, with new
coordination strategies, tooling abstractions, and execution models
emerging at a fast pace.

While MAESTRO is designed to cover a diverse set of widely
used MAS architectures and workflows, the insights derived from
our evaluation are necessarily grounded in the specific instances
and configurations studied. As a result, some findings may not
directly transfer to future MAS designs or to application domains
not represented in our benchmark. In particular, advances in agent
orchestration or model capabilities may invalidate certain observa-
tions over time, highlighting the need for continuously evolving
benchmarks alongside the MAS ecosystem.
Overhead of telemetry. MAESTRO incorporates fine-grained
telemetry to examine per-step behavior in LLM-based MAS and
derive detailed insights into execution dynamics. However, such
instrumentation introduces profiling overhead that may degrade
system performance. Before real-world deployment, MAESTRO
must therefore optimize telemetry collection to minimize over-
head, for example, through sampling strategies, adaptive logging,
or lightweight monitoring mechanisms.

12

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

50 0 50 100 150 200 250 300
Duration change (%)

50

0

50

100

150

200

Co
st

 c
ha

ng
e

(%
)

LATSCRAG

Plan-and-Execute

Model
G5M
G5N
G4oM
Ge25F
Ge25FL
Ge20FL

Model
G5M
G5N
G4oM
Ge25F
Ge25FL
Ge20FL

(a) Impact of enabling the Web Search tool. We measure
the deltas in execution latency and monetary costs, after
enabling the web search tool.

Plan-and-Execute CRAG LATS

20

0

20

40

60

Ac
cu

ra
cy

 d
el

ta
 (p

ct
 p

oi
nt

s,
wi

th
 -

wi
th

ou
t)

Accuracy delta, by Architecture

Per-model delta

(b)Accuracy deltas after enabling web search.

Figure 12: Resource cost versus accuracy across agent archi-
tectures. Task-specific designs such as CRAG achieve compa-
rable accuracy with lower resource cost than more general
architectures like LATS.

5.2 Future works
Automated integration for MAS instances. Currently, MAE-
STRO includes a limited representative set of MAS examples, which
may not fully capture the diversity and complexity of real-world de-
ployments. To improve representativeness, the benchmark must in-
corporate a broader range ofMAS examples that reflect the diversity
of real-world deployments and use cases. At present, fine-grained
telemetry is enabled through ad-hoc instrumentation tailored to
individual MAS frameworks. As future work, we plan to develop
an automated translation layer that maps heterogeneous agent im-
plementations into a uniform execution representation, enabling
systematic behavior capture with minimal manual intervention.
Such automated integration would also lower the barrier for exter-
nal contributions, allowing developers to more easily evaluate their
own MAS implementations using our test suite.

Monolith vs. distributed. Similar to the relationship between
monolithic applications and microservices in traditional software
architectures, LLM-based MAS can be deployed either as a single,
unified system or as a collection of distributed agents communicat-
ing over a network. Distributed deployments could bring benefits
such as improved fault tolerance, scalability, and modularity. How-
ever, they also introduce challenges related to network latency,
synchronization, and consistency. Future work could explore the
trade-offs between monolithic and distributed MAS architectures,
evaluating their performance, reliability, and resource utilization
under various workloads and deployment scenarios. Also, it would
be interesting to investigate the impact of the underlying network
infrastructure on the behavior and performance of distributed LLM-
based MAS.
MAS-specific failure attribution. The inherent non-determinism
of LLMs introduces failure modes that are rarely encountered in
traditional deterministic systems. When multiple agents are com-
posed into a pipeline, these effects are further amplified, increasing
the likelihood of inconsistent or emergent failure behaviors. Such
phenomena are already observed in our evaluation. For instance, in
the Plan-and-Execute architecture, we identify recurring execution
patterns in which the executor successfully retrieves and returns
the gold answer, yet the replanner repeatedly rejects the interme-
diate result. This mismatch prevents the system from reaching a
terminal state, ultimately leading to timeouts despite the presence
of a correct solution in the execution trace. These observations
highlight the difficulty of failure attribution in LLM-based MAS.
Due to the extensive fault space induced by LLM heterogeneity
(D1), which grows combinatorially as multiple agents and models
interact, failures often cannot be localized to a single component
or decision point. Developing principled failure taxonomies and
robust attribution mechanisms for such systems therefore remains
an important direction for future work.
Communication mechanisms. Our experiments reveal substan-
tial variation in how different MAS frameworks implement inter-
agent communication. In many of the frameworks we evaluate,
agents primarily interact through structured function calls. Others
rely on a shared global scratchpad that allows agents to read from
and write to a common intermediate state.

For interactions beyond a single host or for accessing external
data sources, some frameworks additionally support standardized
communication protocols, such as agent-to-agent (A2A) [12] mes-
saging or the Model Context Protocol (MCP) [13]. These differences
in communication mechanisms introduce distinct execution seman-
tics and coordination patterns, yet their impact on system perfor-
mance, robustness, and failure behavior remains largely unexplored.
This observation highlights an open research area in understand-
ing how communication design choices influence the behavior of
LLM-based MAS.
Parallelism and coordination effects. Parallelism fundamentally
alters the execution dynamics of LLM-basedMAS, affecting not only
throughput and resource utilization but also coordination behavior
and failure modes. While parallel execution and load balancing are
well-established techniques in traditional systems, their impact in
asynchronous MAS remains poorly understood.

13

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

Existing work has extensively studied single-LLM optimizations,
such as speculative inference and parallel decoding [6, 30], to im-
prove accuracy or cost–performance trade-offs. However, it is un-
clear how these techniques translate to multi-agent settings, where
multiple agents may operate concurrently and interact through
shared state or tools.

In particular, the effects of parallel agents with overlapping or
partially redundant roles are not yet well characterized. Such con-
figurations may introduce new coordination overheads, contention,
or emergent behaviors that differ fundamentally from single-model
parallelism, highlighting an important direction for future investi-
gation.
Framework overhead investigation. In our evaluation, we ob-
serve that kagent [46], a framework designed to facilitate building
distributed LLM-based multi-agent systems, can incur non-trivial
communication overhead and may also trigger operational failures
(e.g., a disk-full error on the kagent controller node). Future work
should systematically characterize the overheads introduced by
MAS frameworks and quantify their impact on end-to-end perfor-
mance and reliability.

6 Conclusion
We argue that LLM-based multi-agent systems (MAS) must be
evaluated not merely by task completion, but as complex systems
characterized by dynamic, stochastic execution. To this end, we in-
troduce MAESTRO, an open-source evaluation suite that standard-
izes the configuration and execution of heterogeneous MAS while
exporting fine-grained, system-level telemetry to enable cross-stack
comparison.

Our evaluation of 12 representative MAS instances reveals that
while agentic workflows are often structurally stable, they exhibit
significant temporal instability, driving high run-to-run variance
in latency, cost, and failure modes. Crucially, we find that MAS
architecture dominates backend model and toolset choices in de-
termining resource profiles, reproducibility, and the cost–latency–
accuracy trade-off. These findings indicate that optimizing relia-
bility and efficiency in agentic systems is fundamentally an archi-
tectural challenge, necessitating benchmarks that prioritize deep
execution visibility over simple application-level scores.

Looking ahead, we plan to extend MAESTRO to support dis-
tributed architectures and automated agent integration, while re-
fining failure attribution to better diagnose stochastic errors. Our
ultimate goal is to establish standardized observability contracts, en-
suring that benchmarking keeps pace with the evolving complexity
of agentic systems.

References
[1] AutoGen. 2025. AutoGenBench. https://github.com/microsoft/autogen/tree/main/

python/packages/agbench Accessed: 2025-12-28.
[2] Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank Agarwal, Maxwell Crouse,

Yara Rizk, Kelsey Bradford, Asim Munawar, Sadhana Kumaravel, Saurabh Goyal,
et al. 2025. Nestful: A benchmark for evaluating llms on nested sequences of
api calls. In Conference on Empirical Methods in Natural Language Processing
(EMNLP). 33526–33535.

[3] BIG bench authors. 2023. Beyond the imitation game: Quantifying and extrap-
olating the capabilities of language models. Transactions on Machine Learning
Research (TMLR) (2023). https://openreview.net/forum?id=uyTL5Bvosj

[4] Tara Bogavelli, Roshnee Sharma, andHari Subramani. 2025. AgentArch: a compre-
hensive benchmark to evaluate agent architectures in enterprise. arXiv preprint
arXiv:2509.10769 (2025).

[5] Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra,
Rishabh Tiwari, Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ram-
chandran, et al. 2025. Why do multi-agent LLM systems fail? arXiv preprint
arXiv:2503.13657 (2025).

[6] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Lau-
rent Sifre, and John Jumper. 2023. Accelerating large language model decoding
with speculative sampling. arXiv preprint arXiv:2302.01318 (2023).

[7] Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus,
Aditya Tanikanti, Ken Raffenetti, Valerie Taylor, Murali Emani, and Venkatram
Vishwanath. 2024. Llm-inference-bench: Inference benchmarking of large lan-
guage models on ai accelerators. In Workshops of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1362–1379.

[8] Comet ML. 2024. Opik: open-source LLM evaluation and observability platform.
https://github.com/comet-ml/opik Accessed: 2025-12-14.

[9] Alessandro Cornacchia, Vaastav Anand, Muhammad Bilal, Zafar Qazi, and Marco
Canini. 2025. DMAS-Forge: A Framework for transparent deployment of AI
applications as distributed systems. Workshop on Systems for Agentic AI (SAA)
(2025).

[10] Microsoft Corporation. 2024. AutoGen. https://microsoft.github.io/autogen/
stable//index.html Accessed: 2025-12-28.

[11] Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kan-
nappan, and Rebecca Qian. 2025. TRAIL: trace reasoning and agentic issue
localization. arXiv preprint arXiv:2505.08638 (2025).

[12] A2A Developers. 2025. A2A protocol specification. https://a2a-protocol.org/
latest/topics/what-is-a2a/ Accessed: 2025-12-09.

[13] MCP Developers. 2025. Model Context Protocol specification. https://
modelcontextprotocol.io/docs/getting-started/intro Accessed: 2025-12-09.

[14] Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas,
Erkang (Eric) Zhu, Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack
Gerrits, Jacob Alber, Peter Chang, Ricky Loynd, RobertWest, Victor Dibia, Ahmed
Awadallah, Ece Kamar, Rafah Hosn, and Saleema Amershi. 2024. Magentic-One:
A generalist multi-agent system for solving complex tasks. Technical Report MSR-
TR-2024-47. Microsoft. https://www.microsoft.com/en-us/research/publication/
magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/

[15] Longling Geng and Edward Y Chang. 2025. Realm-bench: a real-world planning
benchmark for LLMs and multi-agent systems. arXiv preprint arXiv:2502.18836
(2025).

[16] Google. 2025. Google ADK samples repository. https://github.com/google/adk-
samples/tree/main Accessed: 2025-12-28.

[17] Google. 2025. Google agent development kit (ADK). https://google.github.io/adk-
docs/ Accessed: 2025-12-28.

[18] Google. 2025. Google GenAI search tool. https://googleapis.github.io/python-
genai/genai.html#genai.types.GoogleSearch Accessed: 2025-12-28.

[19] Google. 2025. Google Imagen 3 model. https://docs.cloud.google.com/vertex-
ai/generative-ai/docs/models/imagen/3-0-generate Accessed: 2025-12-28.

[20] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V.
Chawla, Olaf Wiest, and Xiangliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges. In International Joint Confer-
ences on Artificial Intelligence Organization (IJCAI), Kate Larson (Ed.). 8048–8057.
doi:10.24963/ijcai.2024/890 Survey Track.

[21] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V
Chawla, Olaf Wiest, and Xiangliang Zhang. 2024. Large language model based
multi-agents: a survey of progress and challenges. arXiv preprint arXiv:2402.01680
(2024).

[22] Zhicheng Guo, Sijie Cheng, HaoWang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan
Liu, Maosong Sun, and Yang Liu. 2024. StableToolBench: towards stable large-
scale benchmarking on tool learning of large language models. arXiv preprint
arXiv:2403.07714 (2024).

[23] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300 (2020).

[24] CrewAI Inc. 2024. CrewAI. https://www.crewai.com Accessed: 2025-12-28.

14

https://github.com/microsoft/autogen/tree/main/python/packages/agbench
https://github.com/microsoft/autogen/tree/main/python/packages/agbench
https://openreview.net/forum?id=uyTL5Bvosj
https://github.com/comet-ml/opik
https://microsoft.github.io/autogen/stable//index.html
https://microsoft.github.io/autogen/stable//index.html
https://a2a-protocol.org/latest/topics/what-is-a2a/
https://a2a-protocol.org/latest/topics/what-is-a2a/
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro
https://www.microsoft.com/en-us/research/publication/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/
https://www.microsoft.com/en-us/research/publication/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/
https://github.com/google/adk-samples/tree/main
https://github.com/google/adk-samples/tree/main
https://google.github.io/adk-docs/
https://google.github.io/adk-docs/
https://googleapis.github.io/python-genai/genai.html#genai.types.GoogleSearch
https://googleapis.github.io/python-genai/genai.html#genai.types.GoogleSearch
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/models/imagen/3-0-generate
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/models/imagen/3-0-generate
https://doi.org/10.24963/ijcai.2024/890
https://www.crewai.com

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

[25] LangChain Inc. 2024. LangGraph. https://langchain-ai.github.io/langgraph/
Accessed: 2025-12-28.

[26] Gurusha Juneja, Jayanth Naga Sai Pasupulati, Alon Albalak, Wenyue Hua, and
William Yang Wang. 2025. MAGPIE: a benchmark for multi-agent contextual
privacy evaluation. arXiv preprint arXiv:2510.15186 (2025).

[27] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. 2022. Fedscale: Benchmarking model
and system performance of federated learning at scale. In International Conference
on Machine Learning (ICML). PMLR, 11814–11827.

[28] LangChain Documentation. 2025. ChatVertexAI — LangChain Vertex AI refer-
ence. https://reference.langchain.com/python/integrations/langchain_google_
vertexai/ChatVertexAI/ Accessed: 2025-12-28.

[29] LastMile AI. 2024. MCP Financial Analyzer: A Multi-Agent MCP Application
Example. Accessed: 2025-12-31.

[30] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast inference from
transformers via speculative decoding. In International Conference on Machine
Learning (ICML). PMLR, 19274–19286.

[31] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Car-
los Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. AlpacaEval: An
automatic evaluator of instruction-following models. https://github.com/tatsu-
lab/alpaca_eval.

[32] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Ben-
jamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Alexander Cos-
grove, Christopher D Manning, Christopher Re, Diana Acosta-Navas, Drew Arad
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren,
Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuk-
sekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khat-
tab, Peter Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani
Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang,
Vishrav Chaudhary,WilliamWang, Xuechen Li, YifanMai, Yuhui Zhang, and Yuta
Koreeda. 2023. Holistic evaluation of language models. Transactions on Machine
Learning Research (TMLR) (2023). https://openreview.net/forum?id=iO4LZibEqW
Featured Certification, Expert Certification.

[33] Wang Lilian. 2023. LLM-powered autonomous agents. https://lilianweng.github.
io/posts/2023-06-23-agent/ Accessed: 2025-12-28.

[34] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the middle: How language models
use long contexts. Transactions of the Association for Computational Linguistics
(TACL) 12 (2024), 157–173.

[35] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu,
Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan
Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan
Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. 2023. AgentBench: evaluating
LLMs as agents. arXiv preprint arXiv:2308.03688 (2023).

[36] LlamaIndex. 2024. LlamaIndex. https://www.llamaindex.ai Accessed: 2025-12-28.
[37] Agno maintainers. 2025. Agno teams. https://docs.agno.com/concepts/teams/

introduction Accessed: 2025-12-28.
[38] Microsoft. 2025. AutoGen AgentChat user guide. https://microsoft.github.io/

autogen/stable//user-guide/agentchat-user-guide/ Accessed: 2025-12-28.
[39] Dany Moshkovich, Hadar Mulian, Sergey Zeltyn, Natti Eder, Inna Skarbovsky,

and Roy Abitbol. 2025. Beyond black-box benchmarking: observability, analytics,
and optimization of agentic systems. arXiv preprint arXiv:2503.06745 (2025).

[40] OpenTelemetry Authors. 2025. OpenTelemetry. https://opentelemetry.io/ Ac-
cessed: 2025-12-28.

[41] Melissa Z Pan, Negar Arabzadeh, Riccardo Cogo, Yuxuan Zhu, Alexander Xiong,
Lakshya A Agrawal, Huanzhi Mao, Emma Shen, Sid Pallerla, Liana Patel, et al.
2025. Measuring agents in production. arXiv preprint arXiv:2512.04123 (2025).

[42] A2A project. 2025. A2A samples repository. https://github.com/a2aproject/a2a-
samples Accessed: 2025-12-28.

[43] Psutil Developers. 2025. Psutil: process and system utilities. https://github.com/
giampaolo/psutil Accessed: 2025-12-28.

[44] Bronson Schoen, Evgenia Nitishinskaya, Mikita Balesni, Axel Højmark, Felix
Hofstätter, Jérémy Scheurer, Alexander Meinke, Jason Wolfe, Teun van der Weij,
Alex Lloyd, et al. 2025. Stress testing deliberative alignment for anti-scheming
training. arXiv preprint arXiv:2509.15541 (2025).

[45] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2023. Reflexion: Language Agents with Verbal Reinforcement
Learning. Advances in Neural Information Processing Systems (NeurIPS) 36 (2023),
8634–8652.

[46] Solo.io. 2025. kagent: cloud native agentic AI framework. https://kagent.dev/
Accessed: 2025-12-28.

[47] Haochen Sun, Shuwen Zhang, Lujie Niu, Lei Ren, Hao Xu, Hao Fu, Fangkun
Zhao, Caixia Yuan, and Xiaojie Wang. 2025. Collab-Overcooked: benchmarking
and evaluating large language models as collaborative agents. arXiv preprint
arXiv:2502.20073 (2025).

[48] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee,
and Ee-Peng Lim. 2023. Plan-and-solve prompting: Improving zero-shot chain-
of-thought reasoning by large language models. arXiv preprint arXiv:2305.04091
(2023).

[49] Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, and Jie Tang. 2024. Battleagent-
bench: a benchmark for evaluating cooperation and competition capabilities of
language models in multi-agent systems. arXiv preprint arXiv:2408.15971 (2024).

[50] Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Yuchu Fang, Yeju Zhou, Yang
Zheng, Zhenheng Tang, Xin He, Rui Guo, et al. 2025. Burstgpt: A real-world work-
load dataset to optimize llm serving systems. In ACM Conference on Knowledge
Discovery and Data Mining (SIGKDD). 5831–5841.

[51] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li
Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. 2024. Autogen: Enabling
Next-Gen LLM Applications via Multi-Agent Conversations. In Conference on
Language Modeling (COLM).

[52] Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and
Dongkuan Xu. 2023. Rewoo: Decoupling reasoning from observations for efficient
augmented language models. arXiv preprint arXiv:2305.18323 (2023).

[53] Bingyu Yan, Zhibo Zhou, Litian Zhang, Lian Zhang, Ziyi Zhou, Dezhuang Miao,
Zhoujun Li, Chaozhuo Li, and Xiaoming Zhang. 2025. Beyond self-talk: a
communication-centric survey of LLM-based multi-agent systems. arXiv preprint
arXiv:2502.14321 (2025).

[54] Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. 2024. Corrective Retrieval
Augmented Generation. (2024).

[55] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, WilliamW. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering. In Conference on Empirical
Methods in Natural Language Processing (EMNLP).

[56] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 2024. Tau-
Bench: a benchmark for tool-agent-user interaction in real-world domains. arXiv
preprint arXiv:2406.12045 (2024).

[57] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural Information Processing Systems
(NeurIPS) 36 (2023), 11809–11822.

[58] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan,
and Yuan Cao. 2022. React: Synergizing Reasoning and Acting in Language
Models. In International Conference on Learning Representations (ICLR).

[59] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, HaohanWang, and Yu-Xiong
Wang. 2023. Language agent tree search unifies reasoning acting and planning
in language models. arXiv preprint arXiv:2310.04406 (2023).

15

https://langchain-ai.github.io/langgraph/
https://reference.langchain.com/python/integrations/langchain_google_vertexai/ChatVertexAI/
https://reference.langchain.com/python/integrations/langchain_google_vertexai/ChatVertexAI/
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=iO4LZibEqW
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/
https://www.llamaindex.ai
https://docs.agno.com/concepts/teams/introduction
https://docs.agno.com/concepts/teams/introduction
https://microsoft.github.io/autogen/stable//user-guide/agentchat-user-guide/
https://microsoft.github.io/autogen/stable//user-guide/agentchat-user-guide/
https://opentelemetry.io/
https://github.com/a2aproject/a2a-samples
https://github.com/a2aproject/a2a-samples
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
https://kagent.dev/

Pre-print, Jan 1, 2026 T. Ma, Y. Chen, et al.

A Appendix
A.1 Details of post-processing component
We build an observation component that characterizes MAS be-
havior across benchmark tasks and configurations. By default, we
generate a common set of plots for each workload. We report results
both for individual executions and aggregated across multiple runs.
Because the full set of figures is large, we plan to release them as a
dataset and provide only a brief summary here.

• Token consumption. For the single run, we plot the to-
ken consumption of each agent over time, including prompt
tokens and completion tokens; we also plot the total token
consumption of all agents over time. For multiple runs, we
plot the average total token consumption of all agents over
time.

• Delay. For the single run, we plot the end-to-end delay of
the whole system, and decompose it into agent processing
delay, agent-to-LLM communication delay, and agent-to-
agent communication delay. For multiple runs, we plot the
average end-to-end delay of the whole system. We plot the
breakdown of the average delay into different components.
We also plot a flame graph for delay.

• CPU and memory usage. For the single run, we plot the
time series of CPU and memory usage of the whole system.
We also give a correlation analysis between CPU/memory
usage and system events (e.g., agent invocations, LLM calls,
etc.). For multiple runs, we plot the mean, peak, and mini-
mum CPU and memory usage of the whole system.

• Message size. For the single run, we plot the average input
and output message size of each agent for both agent-to-
agent messages and agent-to-LLM messages. For multiple
runs, we plot the total input and output message size of
agent-to-agent messages and agent-to-LLM messages. We
also plot per-agent, per-agent-pair, and per-agent-to-LLM
message sizes.

• Call graph. We visualize the call graph of the agents in the
system. We also show the similarity between the call graphs
of different runs using graph similarity metrics. We use two
similarity metrics: Jaccard similarity and Largest Common
Subgraph (LCS) similarity. Jaccard similarity measures the
similarity between two sets of edges in the call graphs, while
LCS similarity measures the sequence similarity of the edges
in the call graphs.

A.2 Collector implementation.
A.2.1 Telemetry field collection. The following listing (Listing 1)
shows a collection of telemetry fields in MAESTRO.

Listing 1: Telemetry field collection
1 [
2 {
3 "trace_id ": "<32-hex -trace -id >",
4 "span_id ": "<16-hex -span -id >",
5 "parent_span_id ": "<16-hex -parent -span -id-or-

null >",
6 "name": "<operation -name >",
7 "agent_name ": "<agent -name >",

8 "start_time ": 0,
9 "end_time ": 0,
10 "duration_ns ": 0,
11 "kind": "<INTERNAL|SERVER|CLIENT|PRODUCER|

CONSUMER >",
12 "status ": {
13 "status_code ": "<UNSET|OK|ERROR >",
14 "description ": "<optional -description >"
15 },
16 "attributes ": {
17 "gen_ai.operation.name": "<call_llm|

execute_tool|invoke_agent >",
18 "gen_ai.system ": "<provider >",
19 "gen_ai.agent.name": "<agent -name >",
20 "gen_ai.agent.description ": "<optional -

description >",
21 "gen_ai.request.model": "<model >",
22 "gen_ai.conversation.id": "<conversation -id

>",
23 "gen_ai.tool.name": "<tool -name >",
24 "gen_ai.tool.type": "<FunctionTool|Builtin

>",
25 "gen_ai.tool.call.id": "<tool -call -id >",
26 "gen_ai.tool.description ": "<tool -

description >",
27 "gen_ai.usage.input_tokens ": 0,
28 "gen_ai.usage.output_tokens ": 0,
29 "gen_ai.usage.total_tokens ": 0,
30 "gen_ai.llm.call.count": 0,
31 "gen_ai.mcp.call.count": 0,
32 "gen_ai.response.finish_reasons ": [],
33 "mcp.server ": "<server -name >",
34 "mcp.tool": "<tool -name >",
35 "gcp.vertex.agent.llm_request ": "<raw -

request -json >",
36 "gcp.vertex.agent.llm_response ": "<raw -

response -json >",
37 "gcp.vertex.agent.tool_call_args ": "<tool -

call -args >",
38 "gcp.vertex.agent.tool_response ": "<tool -

response >",
39 "gcp.vertex.agent.invocation_id ": "<

invocation -id >",
40 "gcp.vertex.agent.session_id ": "<session -id

>",
41 "gcp.vertex.agent.event_id ": "<event -id >",
42 "agent.log": "<optional -log -line >",
43 "agent.retry.attempt_number ": 0,
44 "agent.retry.trigger ": "<quality|

relevance_guard|guard_fail|timeout|
system|upstream >",

45 "agent.retry.previous_span_id ": "<16-hex -
span -id-or-null >",

46 "agent.retry.reason ": "<optional -retry -
trigger >",

47 "run.outcome ": "<success|failure >",
48 "run.outcome_reason ": "<optional -reason >",
49 "run.judgement ": "<correct|wrong|unknown >",
50 "run.judgement_reason ": "<optional -reason >",
51 "agent.failure.category ": "<guard|quality|

system|timeout|upstream >",
52 "agent.failure.reason ": "<free -text >",

16

MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability Pre-print, Jan 1, 2026

53 "agent.output.useless ": false ,
54 "agent.output.useless_reason ": "<free -text

>",
55 "communication.input_message_size_bytes ": 0,
56 "communication.output_message_size_bytes ":

0,
57 "communication.total_message_size_bytes ": 0
58 },
59 "communication ": {
60 "is_in_process_call ": false ,
61 "input_message_size_bytes ": 0,
62 "output_message_size_bytes ": 0,
63 "total_message_size_bytes ": 0
64 },
65 "resource ": {
66 "attributes ": {
67 "service.name": "<service -name >",
68 "service.version ": "<semver >",
69 "deployment.environment ": "<local|dev|

staging|prod >",
70 "telemetry.sdk.name": "<sdk -name >",
71 "telemetry.sdk.language ": "<language >",
72 "telemetry.sdk.version ": "<version >",
73 "host.name": "<optional -host >"
74 }
75 }
76 }
77]

A.2.2 Lacking of standardized observability contracts. Even when
a common observability schema (e.g., OTEL) is imposed, orches-
tration stacks differ substantially in which telemetry signals are
surfaced, transformed, or suppressed.While some frameworks prop-
agate execution metadata such as token usage, termination rea-
sons, or payload sizes to application-level hooks, others consume
these signals within internal execution layers without exposing
them externally. As a result, identical agent workflows may ex-
hibit markedly different observability characteristics depending
on the combination of model backend, transport mechanism, and
orchestration framework.

A key source of this discrepancy is that, unlike generated text,
token usage is not treated as a first-class execution artifact with a
well-defined exposure contract, but rather as auxiliary metadata.
Consequently, whether token usage is observable depends jointly
on (i) the underlying model API and its response schema, (ii) the
transport layer through which inference results are delivered (e.g.,
streaming versus non-streaming), and (iii) the framework’s instru-
mentation and log-propagation strategy. In the absence of an agreed-
upon contract, each layer independently decides how token usage
is represented and whether it is forwarded, making end-to-end
observability fragile and stack-dependent.
Backend- and modality-dependent loss of usage metadata.
This lack of standardization manifests across both model back-
ends and invocation modalities. For example, Gemini and Vertex
AI do expose token usage information, but under response lay-
outs and terminology that differ from OpenAI- or Anthropic-style

APIs. Token usage may be reported through backend-specific meta-
data fields (e.g., reporting generation-side token usage as candi-
date tokens, rather than OpenAI-style output or completion to-
kens [28]), requiring backend-aware parsing logic to recover usage
information. Beyond generation APIs, we further observe that us-
age metadata may be dropped entirely at the framework level for
non-generative calls. In LangGraph, embedding model invocations
(e.g., OpenAIEmbeddings and VertexAIEmbeddings) do not propa-
gate token usage information, even when the underlying provider
APIs support usage accounting. In such cases, the framework con-
sumes partial response metadata internally without forwarding it to
application-level telemetry or accounting hooks. As a consequence,
orchestration frameworks such as LangGraph and MCP-Agent –
many of which implicitly assume a synchronous, OpenAI-style
usage schema – may fail to capture token usage across a range
of execution paths unless explicit, backend- and modality-aware
instrumentation is implemented. Importantly, these limitations do
not arise from agent logic or missing backend signals, but from
the absence of a stable, cross-provider observability contract that
defines how usage metadata should be structured, preserved, and
forwarded across abstraction boundaries.
Implications for MAS benchmarking. This inconsistency in-
troduces blind spots in cost and efficiency analysis, particularly in
heterogeneous multi-agent settings where different LLM backends
coexist. It further demonstrates that observability properties cannot
be assumed to be model-agnostic, motivating the need for standard-
ized observability contracts that explicitly define which execution
signals must be exposed by LLM APIs and agent frameworks.

17

	Abstract
	1 Introduction
	2 Background
	2.1 Anatomy of an LLM-based MAS
	2.2 Limitations of existing benchmarks

	3 MAESTRO
	3.1 Benchmark design
	3.2 MAS instances taxonomy
	3.3 MAS example suites studied

	4 Case studies
	4.1 Methodology
	4.2 What are the systems usage patterns and implications?
	4.3 How stable are MAS call graphs, and what factors influence their variability?
	4.4 How do different agent architectures affect task performance and stability?
	4.5 How does model choice affect MAS behavior?
	4.6 What are the dominant failure modes in LLM-based multi-agent systems?
	4.7 How does tool usage impact cost and accuracy?

	5 Discussion
	5.1 Limitation
	5.2 Future works

	6 Conclusion
	References
	A Appendix
	A.1 Details of post-processing component
	A.2 Collector implementation.

