Millenial: Modular Microservice Macrobenchmarks

Generating highly reconfigurable microservice benchmarks for systems research!

: - T B oD

Vaastav Anand (vaastav@mpi-sws.org)
CmILENIALLY

Gerd Alliu (galliu@mpi-sws.org)
Antoine Kaufmann (antoinek@mpi-sws.org) |
Deepak Garg (dg@mpi-sws.org) MAX PLANCK INSTITUTE
: : FOR SOFTWARE SYSTEMS
KJonathan Mace (jcmace@mpi-Sws.org) \

>

Association for Computing Machinery
Advancing Computing as a Science & Profession

BEEIEINEEEEEE T

Background

*» Microservices increasingly
popular for cloud apps.

*» Present a gold mine of
research problems.

s Good research requires K batobases

variety of systems. S Caches Challenges
*» Flexibility: Should be easy

to reuse and generate
multiple implementations of
the same application

* Extensibility: The
generation process should
be extensible with new
features.

*» Systematic: Generation

can't be ad-hoc.

GOAL: Generate implementations of microservice
systems on-demand based on user requirements
while providing the flexibility to enable/disable features
and making it easy to integrate new components.

Key Insights

“ Abstract Application:
The business logic of the
app is independent of the
features and impl choices.

“* Reusable

Features/Components:

Features are

Implemented once and

used many times.

We want a What do researchers want?

system with | want end-

replicated e < Multiple diverse systems for
services! traces! _
robust evaluation!
* Existing systems make choice
Vagft-‘/ of features (tracing, replication,
| want to try for my s % Most papers end up using limited

my RPC library el number of systems because of

;r;/:tC;Tni high amount of effort required to
test ideas on even 1 system

Millenial Overview

Input Compiler Output
App. Spec: Core business |£h Port/Addr
© App. Sp E 23 SpecParser _ @ Source Code @ Deploym_ent
logic of various services E=3 Resolution =he Files |==

Wililale Main func
Parser Generation

lass ServiceAIm
f 1r1T (s 1f serviceB: ServiceB, sampleCache: Cache):
self.serv lCEE = serviceB
elf. mr1 ache = sampleCache

serviceB: ServiceB,
l[EE = serviceB
w1f 4mP]H|d[hF = sampleCache

def foo(self, a: int) -= int:
self.sampleCache.put('a',a)
return self.serviceB.bar(a)

Typg Deployment
Checking Generation

Feature

~ Application -

@remote

lef foo(self, a: int) -> int:
self.sampleCache.put('a',a)
return self.serviceB.bar(a)

© Wiring Spec
* Implementation choices for services
“ Apply add-on features like tracing,

replication

L lrlT
Samp1 eCach ed( st', port=11211)
serviceB = ser 1ent|h t 1 I st', port=9601)

self.service = eAImpl(service B mpl_L_h e)

def fool(self, a):
return self.service.foo(a)

ef ma irlJ

address = os.getenv('servic \DDRESS', 'localhost')
port = 1|ch .getenv('servic é FHHT'}J

handler = ServiceATh r1TT11

/

processor = A.Processor(handler)
Trar’pcrt = Serversoc L tfhu 1jr 3, [JIT port)
I tjf,l' _______________ L

pTa ctor "y __cD_.TBln ry Pr to JTF tcr ()

ServiceB().WithServer(rpc server)
ﬂk“w'ce&[5ample[athe=53mple[ache].thhﬁerver{rpz_aerverﬂ

= Client w/ Client wi
Client Modifier1 M Modifier N

Systems as Millenial Applications (LoC)

System Original | Millenial Millenial Millenial
Spec erlng Generated

erver = TS e nreadedSery rlpru sor, transport, tfactory, pfactory)
Erver.sery etﬂ

Server wi Server wi
Modifier N Jall Modifierl

Implementation

Network Network
Client Server

s Early prototype implemented
In 6K lines of Python

¢ Custom DSL for wiring.

¢ Input Spec and Output will be

Abstract
App Logic

DSB-SN 8209 1601 6012 . Reusable Modular
In Go for 2 reasons Components Feature Set
DSB-MM 7794 1146 42 6308 2 Good performance!
DSB-HR 5160 977 63 6081 s Easy to write specs in Go!
TrainTicket 54466 10264 166 45151
SockShop 13987 2015 40 7413 .+ On the Road to Evaluation

*

*

* Can Millenial generate equivalent replicas of existing
microservice systems?

* &

» Lines of Code numbers shown from an early prototype.

* In addition to being highly reconfigurable, Millenial
application offers a significant reduction in the lines of
code that a user needs to write.

* The large fraction of the code generated by Millenial is the
“glue code” to bind the services with features such as
tracing, replication, etc and concrete choices of caches,

databases, and queues.

&

L/

*

*» Do the systems generated by Millenial have realistic
performance?

(4

*» How easy Is It to reconfigure applications with
Millenial?



