
Millenial: Modular Microservice Macrobenchmarks

Vaastav Anand (vaastav@mpi-sws.org)

Gerd Alliu (galliu@mpi-sws.org)

Antoine Kaufmann (antoinek@mpi-sws.org)

Deepak Garg (dg@mpi-sws.org)

Jonathan Mace (jcmace@mpi-sws.org)

Challenges

Systems as Millenial Applications (LoC)

Millenial Overview

Services
Caches

Databases

Background
❖ Microservices increasingly 

popular for cloud apps.

❖ Present a gold mine of 

research problems.

❖ Good research requires 

variety of systems.

On the Road to Evaluation

Compiler Output

Implementation

❖ Early prototype implemented 

in 6K lines of Python

❖ Custom DSL for wiring.

❖ Input Spec and Output will be 

in Go for 2 reasons

❖ Good performance!

❖ Easy to write specs in Go!

Abstract 
App Logic

Modular 
Feature Set

Reusable 
Components

Input

System Original Millenial

Spec

Millenial

Wiring

Millenial

Generated

DSB-SN 8209 1601 59 6012

DSB-MM 7794 1146 42 6308

DSB-HR 5160 977 63 6081

TrainTicket 54466 10264 166 45151

SockShop 13987 2015 40 7413

GOAL: Generate implementations of microservice 

systems on-demand based on user requirements 

while providing the flexibility to enable/disable features 

and making it easy to integrate new components.

❖ Flexibility: Should be easy 

to reuse and generate 

multiple implementations of 

the same application

❖ Extensibility: The 

generation process should 

be extensible with new 

features.

❖ Systematic: Generation 

can’t be ad-hoc.

SpecParser

Wiring

Parser

Type

Checking

Feature

Application

Deployment

Generation

Main func

Generation

Port/Addr

Resolution

Key Insights

❖ Abstract Application: 

The business logic of the 

app is independent of the 

features and impl choices.

❖ Reusable 

Features/Components: 

Features are 

implemented once and 

used many times.

Generating highly reconfigurable microservice benchmarks for systems research!

❖ Lines of Code numbers shown from an early prototype.

❖ In addition to being highly reconfigurable, Millenial

application offers a significant reduction in the lines of 

code that a user needs to write.

❖ The large fraction of the code generated by Millenial is the 

“glue code” to bind the services with features such as 

tracing, replication, etc and concrete choices of caches, 

databases, and queues.

❖ Can Millenial generate equivalent replicas of existing 

microservice systems?

❖ Do the systems generated by Millenial have realistic 

performance?

❖ How easy is it to reconfigure applications with 

Millenial?

❶ App. Spec: Core business 

logic of various services

❷ Wiring Spec
❖ Implementation choices for services

❖ Apply add-on features like tracing, 

replication

❶ Source Code ❷ Deployment 
Files

❖ Parser extracts the system AST from spec

❖ AST is the input and output for each 

compiler pass

❖ Extensible as a new compiler pass has a 

strict interface it follows

❖ Multiple diverse systems for

robust evaluation!

❖ Existing systems make choice 

of features (tracing, replication,

etc) fixed with no flexibility.

❖ Most papers end up using limited 

number of systems because of

high amount of effort required to

test ideas on even 1 system

We want a
system with 
replicated 
services!

I want end-
to-end 
traces!

I want to try 
my RPC library 

in some 
systems

What do researchers want?

Variety 
of 

systems 
for my 

eval


