
Towards using LLMs for Distributed Trace Comparison
Abstract

Vaastav Anand
MPI-SWS
Germany

Pedro Las-Casas
Microsoft

USA

Rodrigo Fonseca
Microsoft

USA

Antoine Kaufmann
MPI-SWS
Germany

Motivation
Troubleshooting issues inmodern cloud systems is a tedious task. To
make this task easier for developers, researchers and practitioners
have developed observability tools to capture relevant information
about the system execution that can aid in triaging issues.

Distributed tracing [5] is an observability technique that tracks
the execution of a single request across the various components
of the system. The trace captures both the causal structure of the
request execution across the various components as well as timing
information about the execution. Thus, these traces are rich in both
structural and temporal information.

To investigate incidents, operators often need to compare the
structural and temporal properties of a trace representing an erro-
neous execution with a reference trace representing a successful
execution. Pair-wise comparison of traces is challenging as the
traces are large and multi-dimensional. Visual comparison tools
such as Jaeger Compare [3] are often unintuitive as they fail in
presenting an easily digestible visual representation of the differ-
ence between the two traces. This issue is further exacerbated if the
differences between the traces are subtle and not easily visualizable.

Thus, there is a dire need for tooling support for operators
to easily compare traces.

Trace Comparison with LLMs
In this abstract, we propose the use of LLMs for pairwise comparison
of distributed traces with our novel tool, Parallax.

Summarizer Comparer
Trace A

Trace B

Comparison 
Summary

Summary B

Summary A

Figure 1: Parallax Design

System Design. Figure 1 shows the design of our LLM-based com-
parison tool called Parallax. Parallax is comprised of two different
types of LLM agents - Summarizer (𝑆) and Comparer (𝐶). 𝑆 takes as
input the two traces that need to be compared, as well as optional
context provided by the operator to focus the summarization on
a specific issue. For each trace, 𝑆 first produces a trace summary.
𝐶 then takes the two generated summaries as input generates the
final comparison output between the two traces.

Our current implementation of Parallax operates on raw traces
in json format without performing any processing. The agents use
gpt-4o model with a context window of 128k tokens.

Preliminary Results. To show the efficacy of Parallax, we com-
pare two traces from an open source trace dataset [2] of the social
network application from the DeathStarBench suite [4]. Specifi-
cally, we select one error-free trace and one trace with timeout
issues, generated from the ComposePost API. As shown in Figure 2,
Parallax correctly identifies the differences between the two traces
and provide additional context for the trace containing the error.

Execution 1 provides a more comprehensive view of inter−
service communication, including detailed steps for each
service and mention of the database interaction in the `
PostStorageService`.

Execution 2 focuses more on the initialization and attempts of
each service, and the recurring theme of client pool
problems. Execution 2 highlights more critical client pool
contention and timeout problems affecting the services,
while Execution 1 reports smooth client pool operations.

Figure 2: Excerpt from the generated comparison summary

Challenges.While the early results with Parallax are promising,
there are still pending challenges we need to overcome.
Challenge 1: Using Temporal Information. Current LLMs are
notorious for poor numerical reasoning, which is crucial for com-
paring temporal information such as execution time of different
tasks in a trace. This must be accurate to prevent operators from
gaining an incorrect insight. Overcoming this challenge requires
the Parallax agents to be robust, or the use of complementary tools.
Spectroscope [6], for example, is good precisely at comparing tim-
ings of isomorphic traces, whereas LLMs can excel in topological
and semantic comparisons.
Challenge 2: Large Traces. Traces can be arbitrarily large and as
a consequence these traces may not completely fit in the context
window of the LLMs. This is a challenge as complete traces are
required for accurate comparison. Until LLMs with larger context
windows such as that of Mnemosyne [1] become publicly available,
we may need an additional processing step to extract information
regarding important features.
Challenge 3: Comparison with Aggregates. Often, operators
need to not only compare an error trace with a single reference
trace but with a set of reference traces. Using LLMs to summarize
a set of traces and then compare it with a bad trace represents an
exciting opportunity that could fundamentally reduce the amount
of effort required by operators to compare traces.



Conference’17, July 2017, Washington, DC, USA Vaastav Anand, Pedro Las-Casas, Rodrigo Fonseca, and Antoine Kaufmann

References
[1] A. Agrawal, J. Chen, Í. Goiri, R. Ramjee, C. Zhang, A. Tumanov, and E. Choukse.

Mnemosyne: Parallelization strategies for efficiently serving multi-million con-
text length llm inference requests without approximations. arXiv preprint
arXiv:2409.17264, 2024.

[2] V. Anand and J. Mace. X-Trace trace dataset for DeathStarBench. Retrieved
October 2019 from https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_
traces/tree/master/socialNetwork, 2019.

[3] J. Farro. Trace comparisons arrive in jaeger 1.7. Retrieved November 2024
from https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-
7-a97ad5e2d05d, 2018.

[4] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, et al. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud and Edge Systems. In 24th
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19).

[5] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs. Distributed tracing
in practice: Instrumenting, analyzing, and debugging microservices. O’Reilly Media,
2020.

[6] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken,
W. Wang, L. Xu, and G. R. Ganger. Diagnosing performance changes by com-
paring request flows. In USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 43–56. USENIX Association, Mar. 2011.

https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_traces/tree/master/socialNetwork
https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_traces/tree/master/socialNetwork
https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d
https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d

	References

